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ABSTRACT: The silicon pixel tracking system for the ATLAS experimentat the Large Hadron
Collider is described and the performance requirements aresummarized. Detailed descriptions of
the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly
and performance of the pixel detector modules are presented. Data obtained from test beams as
well as studies using cosmic rays are also discussed.

KEYWORDS: Particle tracking detectors;ATLAS;LHC.5
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1. Introduction

This paper describes the pixel detector system for the ATLASexperiment at the Large Hadron
Collider (LHC). ATLAS [1] is a general purpose detector for the study of primarily proton-proton80

collisions at the LHC. The pixel detector system is a critical component of the inner tracking
detector of ATLAS. The ATLAS Inner Detector [2] provides charged-particle tracking with high
efficiency over the pseudorapidity range|η | < 2.5. The pixel detector system is the innermost
element of the Inner Detector [3]. The pixel detector contains approximately 80 million channels
and provides pattern recognition capability in order to meet the track reconstruction requirements85

of ATLAS at the full luminosity of the LHC ofL = 1034 cm−2s−1. It is the most important detector
used in the identification and reconstruction of secondary vertices from the decay of, for example,
particles containing a b-quark or for b-tagging of jets. In addition, it provides excellent spatial
resolution for reconstructing primary vertices coming from the proton-proton interaction region
within ATLAS even in the presence of the multiple interactions at the LHC design luminosity.90

In the sections below we first present the performance requirements for the pixel detector.
This is followed by an overview of the system and its relationship to the Inner Detector. We then
describe the principal components of the pixel detector systems, namely the electronics, sensors
and modules. Results from test beam studies of the pixel detector components are then given.
Results from studies of cosmic ray tracks passing through a sub-assembly of the pixel detector,95

corresponding to about 10% of the pixel system, are also presented. Mechanical systems and
services are described in a separate publication [4].

2. Performance Requirements and Design Choices

The performance requirements for the ATLAS Inner Detector (ID) were formulated in the Inner
Detector Technical Design Report (TDR) [2]. The pixel system is an important part of the ID and100

plays a major role in fulfilling these requirements.
The general performance requirements for the pixel system are:

• coverage of the pseudorapidity range|η | < 2.5;

• transverse impact parameter resolution of better than about 15 microns;

• good resolution in the longitudinalz-coordinate, allowing primary vertex recon-105

struction of charged tracks withσ(z) < 1 mm;

• three-dimensional-vertexing capabilities;

• very good b-jet tagging capabilities both in the high-leveltrigger and in the offline
reconstruction;

• minimal material for all elements in the system, in order to reduce multiple scat-110

tering and secondary interactions;

• excellent efficiency for all pixel layers; and

• radiation hardness of the pixel detectors elements to operate after a total dose of
500 kGy or about 1015 neqcm−2(lifetime dose).

– 3 –
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These performance requirements lead to the following majordesign choices:115

• three pixel hits over the full rapidity range. The requirement to have three pixel
layers is based on a detailed study comparing a layout with two-pixel-hits versus
a layout with three-pixel-hits [5];

• minimal radius of the innermost layer (b-layer), set at 5 cm due to the practical
limitations of clearances around the interaction region beam pipe vacuum system;120

• the smallest pixel size achievable, which is set to 50µm× 400µm by electronics
design limitations.

The expected dose for the innermost layer is expected to reach 500 kGy after approximately
five years of LHC operation. The other layers are expected to reach a 500 kGy dose, the lifetime
dose, after 10 or more years of LHC operation (at a maximum luminosity of 1034 cm−2s−1).125

The expected tracking performance of the pixel system is described elsewhere [2]. For ex-
ample, the effective two-track resolution and the number ofmerged clusters of pixel hits (where a
single cluster can have contributions from two or more charged tracks) depends on the local track
density and other event properties and thus is not easily characterized except through measurements
of tracking performance.130

3. System Overview

In this section we present a brief overview of the pixel system and its relationship to the Inner
Detector. The basic parameters of the pixel system are also summarized in this section. The pixel
detector is the innermost element of the Inner Detector as shown in Fig. 1. The pixel tracker is
designed to provide at least three points on a charged track emanating from the collision region135

in ATLAS. The pixel detector and the other elements of the Inner Detector span a pseudorapidity
range|η | < 2.5.

The principal components of the pixel tracking system are the following:

• the active region of the pixel detector, which is composed ofthree barrel layers
and a total of six disk layers, three at each end of the barrel region;140

• internal services (power, monitoring, optical input/output and cooling) and their
associated mechanical support structures (also supporting the interaction region
beam pipe) on both ends of the active detector region;

• a Pixel Support Tube into which the active part of the pixel detector and the
services and related support structures are inserted and located; and145

• external services that are connected to the internal services at the end of the Pixel
Support Tube.

The active region of the pixel detector is shown in a schematic view in Fig. 2. The active part
of the pixel system consists of three barrel layers–Layer 0 (so-called b-layer), Layer 1 and Layer
2–and two identical endcap regions, each with three disk layers.150

– 4 –
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Figure 1. The ATLAS Inner Detector.

Figure 2. A schematic view of the active region of the pixel detector consisting of barrel and endcap layers.

The basic building block of the active part of the pixel detector is a module (section 6) that is
composed of silicon sensors (section 5), front-end electronics and flex-hybrids with control circuits
(section 4). All modules are functionally identical at the sensor/integrated circuit level, but differ
somewhat in the interconnection schemes for barrel modulesand disk modules. The nominal pixel
size is 50 microns in theφ direction and 400 microns inz (barrel region, along the beam axis) or155

r (disk region). A few special pixels in the region between integrated circuits on a module have
larger dimensions–see sections 5 and 6. There are 46,080 pixel electronics channels in a module.

The essential parameters for the barrel region of the pixel detector system are summarized in
Table 1. Modules are mounted on mechanical/cooling supports, called staves, in the barrel region.

– 5 –
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Thirteen modules are mounted on a stave and the stave layout is identical for all layers. The active160

length of each barrel stave is about 801 mm. The staves are mounted in half-shells manufactured
from a carbon-fiber composite material. Two half-shells arejoined to form each barrel layer.

Layer Mean Number of Number of Number of Active
Number Radius [mm] Staves Modules Channels Area [m2]

0 50.5 22 286 13,178,880 0.28
1 88.5 38 494 22,763,520 0.49
2 122.5 52 676 31,150,080 0.67

Total 112 1456 67,092,480 1.45

Table 1. Basic parameters for the barrel region of the ATLAS pixel detector system.

The two endcap regions are identical. Each is composed of three disk layers, and each disk
layer is identical. The basic parameters of the endcap region are given in Table 2. Modules are
mounted on mechanical/cooling supports, called disk sectors. There are eight identical sectors in165

each disk.

Disk Meanz Number of Number of Number of Active
Number [mm] Sectors Modules Channels Area [m2]

0 495 8 48 2,211,840 0.0475
1 580 8 48 2,211,840 0.0475
2 650 8 48 2,211,840 0.0475

Total one endcap 24 144 6,635,520 0.14
Total both endcaps 48 288 13,271,040 0.28

Table 2. Basic parameters of the endcap region of the ATLAS pixel detector system.

The total number of pixels in the system is approximately 67 million in the barrel and 13
million in the endcaps, covering a total active area of about1.7 m2.

The barrel shells and the endcap disks are supported by a spaceframe also manufactured from
a carbon-fiber composite material (see Fig. 2). Electrical,optical and cooling services are con-170

nected and routed within service panels (four on each end of the pixel detector) from patch panels
(Patch Panel 0–PP0) at the ends of the supporting spaceframeto the end of the Pixel Support Tube.
These services are supported by carbon fiber structures thatalso hold the beryllium vacuum pipe
within the Pixel Support Tube. Electrical, optical and cooling connections are made at the end of
the Pixel Support Tube at Patch Panel 1 (PP1). Connections and control of external services are175

made at additional patch panels (PP2, PP3 and PP4) located within the ATLAS detector or near
the ATLAS control room complex. The principal sub–elementsof the pixel detector — barrels,
endcaps, service supports and eight service panels — were assembled in a surface building near
the ATLAS underground cavern. The complete pixel detector along with its services was tested in
part and then installed as a unit in the Inner Detector. The mechanics, services and assembly of the180

pixel detector are described in detail in Ref. [4].

– 6 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
4
0
8

The contribution of the pixel detector to the total Inner Detector material budget as a function
of pseudorapidity is given in Fig. 3 (radiation lengths) andFig. 4 (interaction lengths). The beam
pipe contribution is also presented.
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Figure 3. Radiation length of the pixel detector versus pseudorapidity showing the contribution from each
layer and from all disks. Layer and disk contributions include services and supports directly in front of and
behind the layer/disk. All remaining services and supports, including services in the region between the
barrel and endcap are included in the "Services/Supports" category.
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4. Electronics Systems185

4.1 Overview

The first comprehensive proposal of the pixel electronic system was described in 1997-98 in the
ATLAS Inner Detector and Pixel Detector Technical Design Reports [2, 3]. The complete system
underwent several revisions in subsequent years. The totalnumber of instrumented channels is
about 80 million, each containing approximately 1,000 transistors and each consuming a maximum190

power of 100µW (power for on-detector circuitry only).

4.1.1 System Architecture

A block diagram that illustrates the principal elements of the system architecture is shown in Fig. 5.
There are 16 front-end chips (FE) in each pixel module and these are arranged in two rows of eight

1
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Figure 5. Block diagram of the pixel detector system architecture.

chips. The 16 FEs are read out by a Module Control Chip (MCC). Data are transmitted from the195

FE to the MCC using Low Voltage Differential Signalling (LVDS) serial links, configured in a star
topology. The serial protocol minimises the number of linesto be routed, while the star topology
maximizes bandwidth and reliability. Each module is then connected to the off-detector Read-out
Drivers (RODs) through optical-fiber links (opto-links). One down link is used to transmit clock,
trigger, commands and configuration data, while one or two up-links are used for event readout.200

The b-layer uses two up-links to increase the aggregate bandwidth needed for the higher average hit
occupancy that occurs at the minimum radius. The readout (R/O) architecture is "data-push". This
means that each component in the chain (FE, MCC) always transmits at the maximum rate, and
there is no busy mechanism to stop transmission when buffersare full. Each upstream component
in the R/O chain (MCC, ROD) constantly monitors the number ofevents received and compares205

the results with the number of triggers sent. If the difference of the two is bigger than a predefined
value, triggers downstream are blocked and empty events aregenerated.

The power supply system uses a combination of customized-commercial components and
fully-custom components for the low (electronics) and high(sensor bias) voltages. The use of
deep sub-micron electronics and long resistive cables withsignificant voltage drops, required the210

use of low-voltage regulator boards, approximately 10 meters from the pixel detector. The absolute
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maximum voltage rating for the pixel electronics is 4 V. The optical-links are custom made using
commercial diode and laser array bare die with custom integrated circuits (DORIC and VDC) and
packaging. An optical-interface card (Back of Crate or BOC)is also used for each ROD.

4.2 Front-end Chip215

4.2.1 Front-end Chip History

Small scale, front-end chips that demonstrated the required analog and digital architecture were
first developed in the second half of the 1990s [6–9]. The firstradiation-soft functional prototypes
of full-size chips were submitted for production in 1998: FE-B and FE-A/C (Pirate). The FE-B
chip was designed using 0.8µm CMOS technology and had the same basic readout architecture220

used for the final chips. The FE-B charge amplifier used a direct cascode1 and source follower,
with a feedback capacitance of 4 fF. The DC feedback was basedon a previous design [7, 8]. The
discriminator used a dual threshold, with a low threshold for precise timing and a high threshold to
flag a hit pixel.

FE-A was made using 0.8µm BiCMOS technology, whereas FE-C was a full CMOS version.225

The charge amplifier used a folded cascode input stage with feedback capacitance of 3 fF and a
new, improved DC feedback. The discriminator was AC coupled, with an input, fully-differential,
bipolar pair in the A-version and CMOS in the C-version. The FE-A column readout architecture
used a shift register to transport the hit address to the bottom of the chip. Hits were associated
with the level 1 trigger (L1) by counting the number of clock cycles needed for the hit to reach the230

bottom of the column. FE-A/B/C demonstrated all the basic ATLAS pixel performance goals in
the laboratory and in beam.

The subsequent chip was developed merging the basic conceptof the amplifier/discriminator
from FE-A/C and the column readout architecture from FE-C into a common layout for the DMILL2-
Durci Mixte sur Isolant Logico-Lineaire - technology (known as FE-D). FE-D1 was submitted in235

July 1999 together with the DORIC and VDC chips (see section 4.4) and a prototype MCC-D0
(see section 4.3). A new production run was submitted in Aug 2000 with two versions of FE-D2:
one with dynamic and the other with static memory cells. Thisrun included the full MCC-D2 and
new DORIC and VDC chips as well. Yields of both FE and MCC were unacceptable and work
with this vendor was terminated. Work in an alternative radiation-hard technology, FE-H, began240

in Dec 1999. The chip was almost ready but was never submittedbecause of large cost increases.
The failure of both traditional radiation-hard vendors pushed the collaboration towards the Deep
Sub-micron (DSM) approach, based upon a commercial 0.25µm CMOS process and a radiation-
tolerant layout. A major design effort was initiated in September 2000. Three versions (FE-I1,
FE-I2 and FE-I3) were eventually produced. The final chip (FE-I3) became available in late 2003.245

Table 3 gives a summary of the front-end designs developed for the ATLAS pixel detector.

4.2.2 Design

Chip Architecture The readout chip for the ATLAS pixel detector [15, 16], shownin Fig. 6,
contains 2880 pixel cells of 50× 400 µm2 size arranged in an 18× 160 matrix. Each pixel cell

1The cascode is a two-stage amplifier composed of a transconductance amplifier followed by a current buffer.
2DMILL technology was developed by CEA, France, and then produced under license by TEMIC Matra MHS.
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Chip Year Cell size Col× Row Transis- Technology References

[µm2] tors
Beer & Pastis 1996 50×436 12×63 – AMS 0.8µm BiCMOS, 2M [6,9]
M72b 1997 50×536 12×64 – HP 0.8µm CMOS, 2M [6]
Marebo 1997 50×397 12×63 0.1 M DMILL 0.8µm BiCMOS, 2M [7,8]
FE-B 1998 50×400 18×160 0.8 M HP 0.8µm CMOS, 3M [10–12]
FE-A/C 1998 50×400 18×160 0.8 M AMS 0.8µm BiCMOS, 2M [9,12]
FE-D1 1999 50×400 18×160 0.8 M DMILL 0.8µm BiCMOS, 2M [12]
FE-D2 2000 50×400 18×160 0.8 M DMILL 0.8µm BiCMOS, 2M –
FE-I1 2002 50×400 18×160 2.5 M DSM 0.25µm CMOS, 6M [13]
FE-I2/I2.1 2003 50×400 18×160 3.5 M DSM 0.25µm CMOS, 6M [14]
FE-I3 2003 50×400 18×160 3.5 M DSM 0.25µm CMOS, 6M [15–18]

Table 3. Summary of the ATLAS pixel front-end chips designed and fabricated as described in the text. The
chips contain two (2M), three (3M) or six (6M) metal layers asindicated.

contains an analogue block where the sensor charge signal isamplified and compared to a pro-250

grammable threshold using a comparator. The digital readout part transfers the hit pixel address,
a hit leading edge (LE) timestamp, and a trailing edge (TE) timestamp to the buffers at the chip
periphery. In these buffers a Time-over-Threshold (ToT) iscalculated by subtracting the TE from
the LE timestamp. These hit-buffers monitor the time of eachstored hit by inspecting the LE time
stamp. When a hit time becomes longer than the latency of the L1 trigger (approximately 3.2µs)255

and no trigger signal is recorded, the hit information is deleted. Hits marked by trigger signals are
selected for readout. Triggered hit data are then transmitted serially out of the chip in the same
order as the trigger arrival.

Charge Sensitive Preamplifier The charge-sensitive amplifier uses a single-ended, folded-cascode
topology, which is a common choice for low-voltage and high gain amplifiers. The amplifier is op-260

timised for a nominal capacitive load of 400 fF and designed for the negative signals expected
from n+–on–n-bulk detectors. The design of the charge amplifier wasparticularly influenced by
requirements pertaining to sensor irradiation, which can produce leakage currents up to 100 nA.
The preamplifier has a 5 fF feedback capacitor with a current-source-continuous reset, a 15 ns rise-
time and operates at about 8µA bias. Since the input is DC-coupled, a compensation circuit is265

implemented that drains the leakage current and prevents itfrom influencing the continuous reset
circuit. The implementation, shown in Fig. 7, uses two PMOS devices, one (M2) providing leakage
current compensation and the other (M1) continuously resetting the feedback capacitor.

An important property of this feedback circuit is that the discharge current provided by the
reset device saturates for high-output-signal amplitudes. The return to baseline is, therefore, nearly270

linear and a discriminator pulse width proportional to the input charge is obtained. The width of
the discriminator output, Time-over-Threshold (ToT), cantherefore be used to measure the signal
amplitude. The duration of the ToT is measured by counting the cycles of the 40 MHz master chip
clock. The feedback current is 4 nA for a 1µs return to baseline for a 20,000 electron-equivalent
input. The feedback circuit has an additional diode-connected transistor M3, which acts as a level275

shifter so that the DC-levels of input and output nodes are nearly equal. It also simplifies the
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Hit address
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pad

Slow control

Chip address

Sync

stamp

Figure 6. Schematic plan of the front-end chip (FE-I3) with main functional elements. Not to scale.

DC-coupling between the amplifier and the discriminator, asdescribed below.

Discriminator Signal discrimination is made by a two-stage circuit: a fully differential, low-gain
amplifier, where the threshold control operates by modifying the input offset, and a DC-coupled,
differential comparator. The first stage has a bias of about 4µA, whereas the second uses a current280

of about 5µA. A local threshold generator is integrated in every pixel in order to make the threshold
independent of the local digital supply voltage for each pixel and on the amplifier bias currentI f .
Seven-bits are used for each pixel to adjust the discriminator threshold.

Pixel Cell Control Logic A complete block diagram of the analogue part with several additional
circuit blocks is shown in Fig. 8. Each pixel has several parameters that can be tuned through a285
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Figure 7. Charge preamplifier feedback circuit.
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Figure 8. Pixel cell block diagram.

14-bit control register. These bits are:

• FDAC 0-2: 3-bits to trim the feedback (I f ) current for tuning the ToT response.

• TDAC 0-6: 7-bits to trim the threshold in each pixel.

• MASK: the digital output of the analogue part can be switched off locally by setting this bit.

• EnHitBus: the digital outputs of all readout channels can be directly observed using a wired290

OR which is locally enabled with this bit. This bit also controls, through transistor M2b, the
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summing of a current proportional to the feedback plus leakage current in the preamplifier,
allowing for monitoring of the feedback current and of the leakage current from the sensor.

• Select: enables the pixel for test charge injection. The amplitude is generated from VCal

(voltage proportional to the injected calibration charge), whereas the timing comes from an295

externalStrobesignal.

• Shutdown:disables the charge amplifier so that no output is generated from the pixel.

Pixel Cell Readout Logic A block diagram of the column-pair readout is shown in Fig. 9.LE and
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Figure 9. Block diagram of the column-pair readout.

TE timestamps are temporarily stored in local memories before being transferred to the hit-buffers
at the chip periphery. A digital circuit generates two short(1 ns) strobes at the LE and TE com-300

parator edges. These signals are used to store the 8-bit Gray-coded time stamp in two memories.
The time stamps, generated at the chip periphery, running at40 MHz, are distributed differentially
in order to decrease the digital crosstalk to the analogue circuits and the sensor electrodes. The
complete hit information is available after the TE of the comparator signal and data transfer starts.
The time stamp of the LE (8-bits), of the TE (8-bits) and the row number (8-bits) are transferred305

to the end-of-column (EoC) buffers. Transfer happens by a priority mechanism that selects cells
with data starting from the top row. The topmost cell with a hit transfers its data to the bus and all
the cells below it are inhibited. When the cell is read out, itreleases the priority encoder bus and
subsequent hits are selected and put on the readout bus. The readout speed is limited by the time
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the priority logic needs to ripple down. Hits can ripple through at a programmable speed that is310

obtained from the 40 MHz clock division. The maximum speed atwhich bytes can be transferred
to the EoC is 20 MHz.

Column Readout Controller The readout is column based, and two columns are read out from
the same controller. The first task of the controller is the generation of the readout sequence to
transfer hit information: LE and TE timestamps, and the pixel-row address into an EoC buffer.315

This operation begins when data is complete, which is after the TE discriminator is activated. The
transfer of hits from a column pair is synchronized by the Controller end-of-Column Unit (CEU),
which operates at a selectable speed of 5, 10, or 20 MHz. A total of 64 hit buffers are available for
each double-column. The second task involves digital processing of the hit data. Hit information
is formatted by the CEU. Formatting includes the ToT calculation: subtraction of a TE time stamp320

from a LE timestamp. Optionally, a digital threshold may be applied to the ToT, and a timewalk
(time slewing for small charges with respect to high charge)correction may be applied (write a hit
twice if below correction threshold, once with LE and once with LE−1, or both. These operations
are pipelined to minimize deadtime, but the EoC writes cannot occur faster than 20 MHz. Hit
information is written to the EoC buffer, where it waits for acorresponding L1 trigger. If a trigger325

arrives at a time corresponding to the LE time stamp plus a programmable trigger latency, the hit
is flagged as belonging to a particular 4-bit trigger number.Otherwise, it is reset and the buffer is
cleared. Once the chip has received one or more L1 triggers, the trigger FIFO will no longer be
empty. This initiates a readout sequence in which the EoC buffers are scanned for the presence
of hits belonging to a particular trigger number. If hits arefound, they are sent to the output330

serializer block, which encodes and transmits them to the MCC. After all hits for a given trigger
number have been sent, an End-of-Event (EoE) word is appended to the data stream. All of these
operations occur concurrently and without deadtime, with all column pairs operating independently
and in parallel.

Event readout from the EoC buffers happens concurrently with the column readout. When the335

chip-level readout controller starts processing a particular L1 event, it first broadcasts the corre-
sponding L1 readout address to all buffers. All cells with hits waiting for readout compare their
stored L1 address with a request value. The readout of the selected L1 hits is controlled by a
priority network, which sorts them in column and row order.

Chip Level Readout Controller The chip-level readout controller collects hit data from the EoC340

buffers and transmits the results off the chip serially. Allhits belonging to the same L1 are grouped
together into a single event, and events are transmitted outof the chip in consecutive trigger order.
When a L1 trigger arrives, the current bunch-crossing time and a buffer-overflow bit are stored
in a FIFO memory, which has a depth of 16 locations. This allows the chip to keep track of 16
pending L1 signals. The write-pointer of the FIFO is used as the L1 identification, which is sent345

to the hit buffers. The readout sequence is started as soon asthe FIFO receives an L1 trigger. If
the L1 priority scan in the hit buffers flags cells with matching trigger numbers, the data of the first
cell in the hierarchy is sent to a global data bus, where the information is copied to a shift register.
The content of the shift register is then transmitted serially. This is repeated until the priority scan
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shows no more hits. An End-of-Event data word, which includes error flags, is then added to the350

event.

Chip Configuration FE-I3 has 231 global configuration bits plus 14 local bits foreach of the
2880 readout channels. The global bits are the settings for eleven 8-bit bias-current DACs, for one
10-bit calibration voltage DAC, for the global threshold bits, for the L1 latency, for the ToT filter
thresholds, for column-enable bits, as well as for others. The configuration is loaded into the chip355

using a serial protocol running at 5 MHz. This protocol uses three chip input pads: a data input,
a clock and a load. Each write operation begins with a 4-bit address, which permits the 16 chips
in a module to receive independent configurations. The address of each chip is encoded with wire
bonds during module assembly.

4.2.3 Requirements, Performance and Production360

The design requirements for the pixel front-end electronics come from operation at high radiation
doses, from the time resolution of 25 ns to separate two contiguous bunch crossings, from noise,
from the minimum operation threshold and dispersion and from the overall power budget. The
calibration relies on a 7-bit adjustment of individual pixel thresholds (tuning). The untuned (tuned)
threshold dispersionσ is 800 (70) electrons equivalent-input charge (e). The noise with the sensor365

attached is 160e(for a pixel size of 50µm× 400µm) and the typical operating threshold is 4000e,
which results in hits with signals> 5500e appearing in the correct 25 ns time bucket (described as
in-time threshold) [17,18]. Neither the dispersion nor thenoise depend on the choice of threshold.
The tuned thresholds have been observed to re-disperse withmoderate radiation dose in prototypes,
and it is expected that periodic threshold re-tuning will beneeded. However, the actual dispersion370

rate in the real operating environment will need to be measured. A selectable option internally
duplicates near-threshold hits in two adjacent time buckets in order to allow for recovery of in-
time threshold inefficiencies. Measurements made on a few modules irradiated to 600 kGy show a
negligible tuned threshold dispersion and a 20% increase inthe noise, despite the very high induced
sensor leakage current (60 nA for normal pixels at−7◦C). For a configured chip, the typical digital375

current is 45 mA at 2 V and the analogue current is 75 mA at 1.6 V for a total power of 220 mW.

Chip production was made in batches of 48 wafers. There are 288 chips on each 8-inch wafer.
Six production batches were purchased along with the six wafers from an engineering production
run. The average wafer-probing yield was about 80%. The ATLAS pixel detector contains a to-
tal of 27904 front-end chips. The wafers were probed using semi-automatic probe stations. Each380

chip was fully characterized including measurement of a reference calibration capacitor value us-
ing a dedicated circuit only available during probing. Thisremoved process variations from the
charge and threshold calibration scale. The test time was approximately 30 hours per wafer. Chip
selections was based on the evaluation of 30 analog and digital parameters. Every chip was also
probed after dicing the bumped wafers (section 6) using custom vacuum chucks to hold up to 60385

chips. About 2% of the chips failed after dicing. In addition, the indium-bumped chips were
photographed during probing and 160 images-per-chip archived for future reference.

– 15 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
4
0
8

4.3 Module Control Chip (MCC)

4.3.1 MCC History

The prototype sequence leading up to the Module Controller Chip (MCC) is shown in Table 4.390

The very first version of the chip, submitted in 1998, was fabricated in a radiation-soft process

Chip Year Std.Cells Transistors Chip size [mm2] Technology

MCC-AMS Apr 1998 17 922 363 000 10.3×6.3 AMS 0.8µm CMOS, 2M
MCC-D0 Aug 1999 – – 6.1×3.5 DMILL 0 .8µm BiCMOS 2M
MCC-D2 Aug 2000 13 446 328 000 11.9×8.4 DMILL 0 .8µm BiCMOS, 2M
MCC-I1 Nov 2001 33 210 650 000 6.38×3.98 DSM 0.25µm CMOS, 5M
MCC-I2 Feb 2003 67 919 880 000 6.84×5.14 DSM 0.25µm CMOS, 5M
MCC-I2.1 2003 67 919 880 000 6.84×5.14 DSM 0.25µm CMOS, 5M

Table 4. Summary of the ATLAS pixel MCC chips. The number of metal layers in a chip is designated by
2M (two metal layers) or 5M (five metal layers).

using 0.8µm CMOS technology [19]. This chip was extensively used when building radiation-
soft modules. The technology was chosen as it was very close to the 0.8µm BiCMOS DMILL
technology which, at the time, was the chosen radiation-hard technology for the ATLAS pixel
detector.395

A first prototype of the rad-hard chip (MCC-D0) was built in 1999. It contained only one
Receiver, but all the remaining circuitry was implemented thereby providing a good test of the
DMILL technology. The final version of the chip (MCC-D2) was submitted in August 2000. The
chip worked fine but had an unacceptably low yield, for both MCC-D2 and FE-D2. Consequently,
this technology was abandoned.400

At this time, the MCC was ported to the DSM 0.25µm CMOS technology, and the MCC-I1
chip was submitted in November 2001. A new version of the chip, MCC-I2, was made in 2003 in
order to provide better Single Event Upset (SEU) hardening to the chip. It turned out that this chip
had a small error that could be corrected by modifying only one metal line. Six additional wafers,
containing the correction in the layout, were produced in 2003 leading to the final MCC-I2.1 chip.405

4.3.2 Design

This section briefly describes the actual implemetation of the production MCC chip, labeled MCC-
I2.1. A simplified block diagram of the MCC internal architecture is shown in Fig. 10. The MCC
has three main system tasks: (1) loading parameter and configuration data into the FEs and into the
MCC itself; (2) distributing timing signals such as bunch-crossing, L1 trigger and resets; and (3)410

reading out the FE chip and event building.

System Configuration The FE chips and the MCC must be configured after power-up or before
starting a data-taking run. It is possible to write and read to all the MCC registers and FIFOs.
This is used to configure, to read status information or to test the functionality of the chip. For
this last function we provide a special set of commands that allows one to write simulated events415

into the FIFOs and to run the Event Builder with the stored values in order to check the complete
functionality of the chip. Once the MCC is embedded in the pixel detector, it will be important to
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Figure 10. Module Control Chip block diagram.

test whether the event building works with known simulated events. Global FE chip registers and
parameters in each of the pixel cells are written and read back through the MCC.

Trigger, Reset and Timing The second task of the MCC is the distribution of L1 triggers,resets420

and calibration/timing signals for the FE chips. InData Takingmode, each time a L1 trigger
command is received by the MCC, the Trigger, Timing & Control(TTC) logic issues a trigger to
the FEs, as long as there are less than 16 events still to be processed. In case of an overflow, the L1
trigger is not generated by the MCC and the corresponding event is lost. The information is sent to
the ROD together with the number of missing events in order tokeep up with event synchronisation.425

In addition to the triggers, the TTC logic generates a hierarchy of reset signals that can be applied
either to the MCC or to one or more FE’s. The last function of the TTC logic is the ability to issue
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calibration strobes to the FEs.This is used to calibrate theFE analogue cells on a pixel-by-pixel
basis.

Event building The read-out logic that was chosen for the pixel detector is adata-push architec-430

ture with two levels of buffering: EoC buffers in the FE chipsand 16 individual 128×27-bit deep
FIFOs (ReceiverFIFO) at the MCC inputs.

Event readout and building is by far the most complicated task, and it occupies most of the
chip area. Data received from the FEs, in response to a L1 trigger, are deserialised and buffered in
16 FIFOs, one FIFO for each receiving FE line. These FIFOs areused to derandomise the 16 data435

flows from the FEs and are used by the event builder to extract ordered hits and to prepare them
for transmission out of the pixel module. Event building is performed by two concurrent processes
running in the MCC. The first (Receiver) deals with filling the16 input FIFOs with data received
from the corresponding FE chip, while the second (Event Builder) extracts data from the FIFOs and
builds up the event. Each FE sends data as soon as they are available with two constraints. Event440

hits must be ordered by event number and for each event an end-of-event (EoE) word is generated.
The EoE is also sent for the case of an empty event to maintain the event synchronisation.

The event transmitted to the ROD is organized by the Event Builder process on an event-by-
event basis, instead of a hit-by-hit basis. If the FIFO becomes full while storing incoming hits,
all subsequent hits are discarded and only the EoE word is written into the FIFO. In this case, a445

truncated event flag will be stored in the ReceiverFIFO and then recorded to the MCC output data
stream. The mechanism ensures that reconstructed events are not corrupted by FIFO overflows.

As soon as the Event Builder finds that an event is completely received from all of the 16 FEs,
it starts building up and transmitting the event. The Event Builder learns from the Scoreboard when
the events are complete. The first information written to theoutput data stream is the bunch crossing450

identifier (BCID) and the L1 identifier (L1ID). At this point the Event Builder starts fetching data
from the ReceiverFIFOs, until it finds an EoE in the data. Oncethe Event is finished, a Trailer word
is sent out to inform the ROD that the Event has ended.

I/O Protocols Several serial protocols were defined for communication to/from the ROD/MCC
and the MCC/FE. All protocols that are active during data taking use only LVDS-type signals455

(low-voltage differential, but not necessarily conforming to the LVDS standards), whereas signals
occuring during configuration use single-ended CMOS to reduce the number of interconnection
lines. Communications from the ROD to the MCC use a 40 Mb/s data line (Data Command Input
- DCI) validated by the rising edge of the 40 MHz clock (CK).

The MCC to ROD link may use 40, 80 or 160 Mb/s data rates. For thecase of 40 Mb/s, a460

new bit is transmitted at every rising edge of the CK. For the 80 Mb/s, bits are sent at both clock
transitions. Finally for 160 Mb/s, both lines and clock edges are used. This can be considered as a
2-bit parallel link. Only the event readout uses the two higher bit rates. Readout of configuration
data is always at 40 Mb/s. The robustness of data passing fromthe MCC to the ROD is improved
by providing a bit-flip-safe Header and by adding synchronisation bits after a known numbers of465

clock cycles.

Communications from the MCC to the FE chips are accomplishedusing a serial CMOS data
bus (Data Address Output - DAO), a CMOS control line (Load - LD) and a 5 MHz validation
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CMOS clock (Control Clock - CCK). Both configuration and event data from the FE to the MCC
are transmitted using 16 individual LVDS serial links (DataInput - DTI). The MCC and the FE use470

the 40 MHz (XCK) system clock fanned out by the MCC, which is obtained from the beam crossing
clock. The clock is distributed to the 16 FEs in a module usinga multi-drop LVDS connections
from a single MCC output.

Special care is needed in the implementation of the Data–Taking protocols in order to minimize
the effect of possible Single Event Upset events. In particular, while in data taking mode, there are475

only two possible 5-bit commands: ’trigger’ and ’exit data-taking modes’. All permutations of the
trigger command, obtained by flipping one single bit, are also interpreted as a trigger command
with the correct timing.

4.3.3 Requirements, Performance and Production

The design requirements include operation at high radiation dose, time resolution of 25 ns sepa-480

rating two contiguous bunch crossings, the expected bandwidths at the highest luminosity, the L1
trigger rate of 100 kHz and the number of FE chips that are controlled in a module.

The 16 FIFO’s in the MCC were designed to handle the expected data rate of the FE chips
operating at full luminosity with a L1 trigger rate of 100 kHz. In addition, the circuits were de-
signed to be robust against a Single Event Upset (SEU). This problem was addressed using either485

triple redundancy majority logic or error detection and correction schemes. Several modules were
irradiated up to (and in some cases beyond) the full LHC-lifetime dose, continuously reading out
the data during irradiation. From these SEU studies, we expect stable operation at the LHC without
a significant loss in the configuration data coming from bit-flips in the memory elements.

For a configured chip, the typical digital current is 145 mA at2.0 V. All MCC-I2.1 chips were490

produced in a single batch of six wafers. The number of potentially good chips per wafer is 536.
The measured yield was 83%, providing a total of 2666 good chips. A total of 1744 chips are
used in the ATLAS pixel detector. The wafers were probed at a commercial vendor using supplied
test vectors. Test vectors were produced using Automatic Test Pattern Generation (ATPG) design
methodology together with additional hand generated vectors. The combined test vectors provided495

almost 100% fault coverage of the chip.

4.4 Optical Communication

4.4.1 Optical Link Architecture

The communication between the detector modules and the off-detector electronics occurs via op-
tical links. The opto-links were selected to implement electrical decoupling and to minimize the500

material budget. The architecture was inherited from the ATLAS SCT [20]. Modifications were
made to adapt to the data-rates, modularities and radiationhardness needs of the pixel detector.

A block diagram of the optical-link system architecture is shown in Fig. 11. The two main
components in the optical-link system are the opto-board, on the detector side, and the Back of
Crate Card (BOC), on the off-detector end. In order to keep the material budget low, accommodate505

fiber routing requirements, control radiation exposure, and permit the use of optical arrays, the
opto-components and the related receiver/driver IC’s werenot implemented on the detector mod-
ules. The optical components were put on the opto-boards at Patch Panel 0 (PP0), at a distance of
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Figure 11. Optical-link system architecture.

up to about one meter from the modules and at relatively largeradius, namely about 200 mm inside
the Pixel Support Tube.510

The transmission of the signals from the detector modules tothe opto-boards uses LVDS elec-
trical connections. These serial connections link the MCC with the VCSEL Driver Chip (VDC) and
the Digital Optical Receiver IC (DORIC) sited on the opto-boards. The DORIC and VDC designs
were also derived from the SCT project, but have been adaptedto survive the higher radiation dose
expected in the pixel detector. These chips have been fabricated on the same silicon wafers used to515

produce the MCC chips.
The communication with each detector module uses individual fibres: one for down-link and

one or two for up-links. Trigger, clock, commands and configuration data travel on the down-link,
while event data and configuration read-back data travel on the up-link(s). On the down-link, a bi-
phase mark (BPM) encoding is used to send a 40 Mb/s control stream on the same channel as the520

40 MHz Bunch Crossing (BC) clock. Decoding of the BPM channelwithin the DORIC recovers
both the data stream and the clock signal. The use of individual links for every module permits the
adjustment of the timing used to associate the hit to the bunch crossing. The timing adjustment is
accomplished by changing the delay of the transmitted signal with respect to the phase of the LHC
machine reference clock received in the BOC.525

The readout bandwidth required to extract the hits from the detector modules depends on the
LHC instantaneous luminosity, on the L1 rate and on the distance between the module and the
interaction point. Simulation of the readout architectureusing generated physics events [19] shows
that a rate of 40 Mb/s for the Layer-2 modules, 80 Mb/s for the Layer-1 or Disk modules and
160 Mb/s for the b-layer modules are needed to keep the numberof lost hits due to bandwidth530

saturation sufficiently low. The data transmitted in the up-links are encoded in non-return-to-zero
(NRZ) format. Electrical-to-optical conversion occurs inthe opto-boards on the detector side and
in the optical-receiver (RX) and optical-transmitter (TX)plug-ins in the BOC.

There are two flavours of opto-boards: Disk/L1/L2-boards (D-board) with eight down-link and
eight up-link channels and b-layer-boards (B-board) with seven down-links and 14 up-links. The535

B-boards use two 80 Mb/s channels to obtain the aggregate bandwidth of 160 Mb/s. Because of the
modularity of staves (13 modules) and of sectors (six modules) D-boards use either six channels
for the disk-sectors or six or seven channels for the half-staves in Layer-1 and Layer-2.
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In the off-detector part of the links, one BOC exists serves each ROD. BOCs have a a variety
of hardware options that are implemented by equipping the card with a variable number of optical-540

receiver or optical-transmitter plug-ins. Each plug-in, in principle, can serve up to eight modules,
but, in practice, only six or seven are used due to the modularity of the detector. BOCs come with
four TX plug-ins and four RX plug-ins, where the maximum bandwidth requirement is 40 Mb/s,
with two TX and two RX for 80 Mb/s and with one TX and two RX for 160 Mb/s. Two custom
chips have been designed by the SCT collaboration and used inthe optical plug-ins: the DRX (12-545

channels Data Receiver ASIC in the RX) and the BPM-12 (12-channels Bi-Phase Mark encoder
ASIC in the TX). In the BOC there is also the optical S-Link interface used to send the ROD output
to the ATLAS Readout Buffer (ROB) units, which are the next level up in the event readout chain.

4.4.2 Opto-Board

The opto-board is the optical-electrical interface on the detector side. It consists of a beryllium-550

oxide (BeO) printed circuit board measuring 2×6.5 cm2. As discussed in Section 4.4.1, two types
of opto-boards (D-boards and B-boards) exist and six or seven detector modules are connected
to them. The D-boards are equipped with one PiN diode array and one VCSEL (Vertical-Cavity
Surface-Emitting Laser) array, while the B-boards have a second VCSEL array. Each opto-board
has two 4-channel DORIC chips, whereas two and four 4-channel VDC chips are loaded onto the555

D-board and B-boards, respectively. The opto-package (opto-pack), which holds the PiN/VCSEL
arrays and the connector for the optical fibres, is custom designed to fulfill requirements of low
mass, and be non-magnetic and radiation tolerant. The totalnumber of opto-boards in the detector
is 288. This is more than the minimum 272 (44 B-boards and 228 D-boards) needed to read out the
detector so that spares are available to recover from problems during integration. Ultimately, only560

one spare board was used. The remaining spares are mounted onthe Patch Panel 0 elements, but
not connected.

PiN Diode Array Arrays of silicon PiN diodes are used to receive the data sentby the VCSELs.
Epitaxial silicon PiN diodes are used because their intrinsic layer provides a thin active layer al-
lowing for fast operation at low PiN bias voltage. The activearea of each individual PiN diode is565

circular with a diameter of 130µm, and the depth of the intrinsic region is 35µm [20]. A PiN
current amplitude of 100µA ensures a Bit Error Rate (BER) less than 10−9.

DORIC The Digital Optical Receiver Integrated Circuit (DORIC) amplifies the signal detected
in the PiN diode and extracts the clock and data from the BPM encoded signal. Data and clock are
transmitted in LVDS format to the MCC. Each DORIC chip contains four identical channels. The570

specification for the current from the PiN diode is in the range of 40µA to 1 mA. The requirements
for the clock are a duty cycle of (50±4) % and a time jitter better than 1 ns.

The DORIC has been designed to have a bit error rate of less than 10−11 after a lifetime-
radiation dose, for a PiN-diode bias current amplitude of 40µA. The PiN diode current amplifiers
use a single-ended scheme [21], avoiding the direct application of the diode bias voltage (10 V),575

which is much higher than the rating of the DSM technology. The DORIC must withstand up to
170 kGy over the expected 10 years of ATLAS operation. It is, therefore, implemented in the same
(0.25µm) CMOS technology as used for FE, MCC and VDC.
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VDC The VDC converts the LVDS input signal, received from the MCC, into a suitable single-
ended signal to drive the VCSELs in a common cathode array configuration. The VDC chips have580

four channels and drive one half of the VCSEL arrays. An external current used to drive the VCSEL
operates up to 20 mA. The nominal current to operate the VCSELis 10 mA. A standing (dim)
current of∼1 mA is provided to improve the switching speed in the VCSEL. The dim current is
remotely controlled by an external voltage. The requirement for the rise/fall time (20 to 80 %) is in
the range of 0.5 to 2.0 ns, where 1.0 ns is nominal. A voltage (VIset), remotely controlled, determines585

the currentIset that sets the amplitude of the VCSEL current (bright minus dim current). The chip
is designed to have constant current consumption, independent of the VCSEL being bright (on) or
dim (off), to avoid generating ripple (noise) on the power supply which is being shared with the
two DORICs on an opto-board.

VCSEL Array Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are used to transmit the590

data optically. The main advantages of VCSELs are that they provide large optical signals at very
low currents and have fast rise and fall times. In order to maintain a low laser threshold current,
VCSELs use ion-implants to selectively produce a buried current-blocking layer to funnel current
through a small area of the active layer. The VCSELs [20] usedin the pixel and SCT systems
have an oxide implant to achieve the current confinement, which is becoming the standard VCSEL595

technology since it produces lower current thresholds at higher bandwidth. VCSELs are produced
in arrays of eight diodes. The typical fibre-coupled-power per channel is greater than 1 mW at
a drive current of 10 mA. The optical power at 10 mA is sufficient to give a noise immunity of
6.2 dB. Using a slightly higher current, it is possible to addanother 1.8 dB of noise immunity [20].
The down-link, where the current is not a critical issue, canprofit from this improved margin600

corresponding to a higher immunity to SEU and to a lower Bit Error Rate.

4.4.3 Back of Crate Card (BOC)

Each BOC [20, 22] is connected to one ROD through the crate back-plane. The BOC has two
functions: it interfaces between the ROD and opto-links andit controls the distribution of the timing
to the on- and off-detector electronics. Each BOC receives asystem clock signal and redistributes605

it to the pixel detector modules and ROD. Each detector module needs a precise phase adjustment
of its 40 MHz clock relative to the bunch-crossing time reference. The adjustment of this phase
can be done for each module independently using the BPM-12 ASIC. [20] The phase of the data
from the modules relative to the global BOC clock can be adjusted using the PHOS4 ASICs [23].
The adjustment range is 0–25 ns in steps of 1 ns. The clock phase can also be adjusted using the610

same ASIC to ensure stable data transmission to the ROD. The opto-electrical conversion and the
connection to the fibres are located in two plug-in cards: TX-plug-in and RX-plug-in, respectively,
for transmission and reception of optical data. The TX-plug-in has an 8-channel VCSEL array and
a BPM-12 ASIC. The RX-plug-in has an 8-channel PiN diode array and a DRX ASIC. [20]

DRX The DRX ASIC amplifies, discriminates and converts the signal from the PiN diode into615

an LVDS signal. The comparator is DC coupled and the threshold can be controlled over a current
range up to 255µA by an external voltage reference generated by a DAC. The DRXchip was
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originally designed for the ATLAS SCT detector and contains12 channels. Only eight channels
per chip are used in the pixel BOC.

BPM-12 The Bi-Phase Mark (BPM-12) ASIC encodes clock and data in theBi-Phase Mark620

format for the fibre optic transmission. This chip was originally designed for the SCT detector and
only 8 of the 12 channels are used for the pixels. A critical specification for this component is to
have a short delay between the input signals and the encoded outputs to minimize the overall L1
trigger delay. The measured delay value is 60 ns. In addition, the BPM-12 has the capability to
delay data transmitted to the detector by up to 63 full clock cycles to adjust for the trigger latency.625

This is implemented as a coarse delay (step-size 25 ns) covering the 63 clock cylces and a fine
delay (step-size of about 300 ps) to cover the full range of one clock cycle with a fine-grained
phase adjustment for each module.

4.4.4 Opto-fibres

The connection between the BOC and the opto-boards uses optical fibres. Two different kinds of630

fibres are used, Stepped Index Multi-Mode fibres (SIMM) and GRaded INdex multi-mode fibres
(GRIN). SIMM fibres have been tested to be radiation tolerantbut have lower bandwidth per unit
length than GRIN fibres [24]. To optimise the bandwidth and radiation tolerance, splicing of 8.1 m
SIMM and 71.1 m GRIN fibres have been used. The fibres are ribbonised into 8-way ribbons, and
eight ribbons are bundled together to form an optical cable.The 8.1 m length of the SIMM fibre is635

terminated by an MT16 connector at∼ 2.5 m from PP0 (at PP1). A total of 84 cables were installed
outside the Pixel Support Tube. SIMM fiber ribbons were used within the Pixel Support Tube to
connect the opto-boards mounted at Patch Panel 0 with the multi-ribbon connector at PP1.

4.4.5 Production and Testing of Opto-Link Components.

The opto-boards were required to pass a stringent quality assurance (QA) procedure, including640

burn-in and thermal cycling, at the two production sites. Inaddition, the boards were required to
pass a reception test at CERN before installation on the service panels. Subsequent tests were also
then performed. Each opto-board was required to produce good optical power, similar to those
observed during the production testing of each board, and over a reasonable DAC operating range
in the DRX. Three major problems were encountered during thetest and are discussed below [25].645

• Common Serial Resistance (CSR).During the reception test it was discovered that some of
the VCSELs on the opto-boards produced very little or no optical power on all channels.
Moreover the optical power on one channel was found to also depend on the current from
other channels. This could be understood as the developmentof a common resistance in the
array. The voltage drop on the CSR results in an inadequate voltage to drive the VCSELs.650

The only fault that could be identified in the production process of the opto-pack was that
the thickness of the conductive epoxy under each VCSEL arraywas∼ 5 µm, as opposed
to ∼ 15 µm as recommended by the manufacturer. A procedure was formulated to estimate
the CSR by measuring the current-vs-voltage (IV) characteristics of one VCSEL channel
with and without current in the other channels. Opto-boardswith > 2.25 Ω of CSR in the655

VCSELs were rejected, corresponding to∼ 7% of the total production.
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• Slow Turn On (STO).The SCT group discovered that, following a few microsecondsof
inactivity, some of their VCSEL arrays took a few microseconds to produce full optical
power. A random sample of opto-boards was tested for STO at the production sites, and
it was found that there was no indication of the problem untilthe test was performed on a660

prototype service panel with the production readout chain,including the fibres. It turned out
that this subtle STO behaviour depended on the distance between the VCSEL surface and the
fiber in a polished, mechanical-transfer (MT) ferrule. The production fiber with the bevelled
edges on the MT ferrule allowed the fiber to be pushed closer tothe VCSEL, picking up
transverse modes that might have been time dependent. The exact cause of the slow turn-on665

behaviour is still under investigation. A new testing procedure was introduced, resulting in
rejection of∼ 7% of the opto-boards with severe STO VCSELs.

• Fluctuations in the optical power (noise).It was discovered that the optical signals had more
noise than was observed during production testing, becauseof the long electrical cables.
These cables allowed noise to enter into the VCSEL bias voltage via the VCSEL current670

control circuitry in the VDC. Consequently, a bypass capacitor on the bias voltage was not
mounted due to the concern that the capacitor might leak after exposure to radiation, ren-
dering the opto-board inoperable. There was no data to support the above concern but the
decision was taken because the opto-boards on the production test system had low noise when
no bypass capacitor was mounted. Fortunately, the capacitors could be readily retrofitted and675

this greatly reduced the fluctuations in the optical power.

Another problem was discovered when the prototype service panel was operated with the
cooling system. The temperature of the opto-boards at a certain region on the service panel was
much lower than anticipated. We required the opto-packs on the opto-boards to produce good
power at 10◦C as part of the QA requirements. However, a significant fraction of the opto-packs680

did not produce sufficient optical power at -25◦C, another temperature where data was collected
as part of the QA procedure. The optical power of these opto-packs was below the specification
of 350µW on the prototype service panel. To overcome the problem, itwas decided to add a
remotely-controllable heating element to the opto-boards, so that the opto-boards could operate at
up to 20◦C.685

One VCSEL and one PIN channel failed during the detector integration. It is believed that
the former was due to electrostatic discharge damage and thelatter due to detached solder (cold
solder) on a lead of the opto-pack. The affected modules wererecovered by switching to a spare
opto-board, in one case, and by moving one module to an unused(seventh channel of a board
serving only six modules) channel, in the other.690

Optical fibres, fabricated and assembled by external companies, have been tested during pro-
duction by measuring light coupling and attenuation. Two 8-way ribbons in the external optical
cables (eight ribbons each) showed failures. Fibres were also tested after installation using a Opti-
cal Time Domain Reflectometer (OTDR) and then replaced by spares, if they failed the test. Similar
tests were performed on the ribbons inside the Pixel SupportTube as they were installed on service695

panels.
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4.4.6 Opto-link Performance

The selection and qualification of the components for use in the opto-link system was done by
extensive laboratory tests and irradiation campaigns. From measurements made on single compo-
nents or parts of the system, a stable performance for the opto-links over 10 year of operation at700

LHC is expected [21, 24, 26–28]. The measurement of the BER inopto-link ring-loops running
at 40 Mb/s (80 Mb/s) gives an upper limitBER< 1.45× 10−14 (BER< 3.62× 10−14). In fact
no single errors were found during the tests [29]. The methodto adjust the timing in the BOC to
time the pixel detector with a bunch crossing is reported in [30]. Automatic tuning of the opto-
link parameters for the entire detector (the system laser forward currents, PiN-diode photo-current705

thresholds, etc.) should be achievable in under 10 minutes.

4.5 Data Acquisition System

The pixel detector Data Acquisition System (DAQ) has been designed following the specifications
of the ATLAS global DAQ architecture [31].

4.5.1 Architecture Overview710

The off-detector readout architecture of ATLAS consists oftwo parts: a sub–detector specific part,
where the Readout Drivers (ROD) are the main building blocks, and an ATLAS common design
that is referred to as the Read Out System (ROS) [32].

The pixel ROD [33] is a 9U-VME module. The ROD handles the datatransfer from the on-
detector electronics to the ROS system. Data from the detector arrive at the RODs through the715

BOCs. Data pass through the RODs and are then received at the ROS by custom designed interface
modules. The ROS is a PC-based system. These PCs temporarilystore readout events in their
memory and transfer only those accepted by the L2 trigger to the next level up in the readout chain.

ROD modules are plugged into ROD crates. There are nine crates with up to 16 ROD modules
per crate. In total, there are 44 modules (three crates) for the b-layer, 38 modules for Layer-1 plus720

28 modules for Layer-2 (four crates) and 24 modules (two crates) for the disks. A Trigger, Timing
& Control Interface Module (TIM) [34–36] and a Single Board Computer (SBC) [37] complete the
ROD crate. The TIM is the interface to the trigger system. TheDAQ software running in the SBCs
controls the modules in the ROD crate. There is no event traffic on the ROD VME–bus during
normal data–taking. Data are routed directly from the ROD tothe ROS PCs [32] via custom-725

designed optical links (S-Links). The VME-bus is, however,heavily used during calibration of the
pixel detector. RODs are controlled, via the VME-bus, by theSBC, which also acts as interface to
the global DAQ system.

Calibration data are treated differently from collision data. The procedure to calibrate the pixel
detector consists of a sequence of injections of a known charge into the pixel’s front-end amplifiers.730

The response of each pixel is measured as a function of the injected charge and of other parameters
(thresholds, preamplifier feedback currents, trigger delay) that can be varied during the calibration
procedure. The typical result of a calibration scan consists of a set of occupancy histograms corre-
sponding to different values for the scanned parameters. Inorder to achieve maximum precision,
it is important to extract data from the FEs at the maximum speed supported by the detector links.735

This makes it difficult to extract calibration data using thenormal data path, as the read-out chain
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from the ROS to the Event Builder is designed to transfer onlyL2-trigger accepted events, while
the detector links are designed to support the full L1 trigger rate. For this reason, during calibration
runs, the ROD decodes the data stream sent by the front-end electronics, fills occupancy histograms
and stores them in memory. The histograms are then extractedvia the VME-bus by the SBC and740

sent to an analysis farm for further manipulation and archiving.

Single Board Computer (SBC) The Single Board Computer is a commercial VP-3153 6U VME
card with a Pentium-M4, having 1.6 GHz clock and 1 GB memory. The card uses a UniverseII5

PCI-VME bridge. It has three gigabit-ethernet interfaces,of which two are used, one to connect
to the ATLAS control network and the second to the analysis farm, where histograms generated in745

the ROD are collected. Up to 40 MB of internal RAM memory is used to cache the configuration
data needed in the pixel detector modules for a complete crate of RODs. The configuration data,
cached in the SBC memory, are stored offline in a database server. The memory is also used as a
transfer buffer for the histograms moved from the RODs to theanalysis farm.

Trigger, Timing & Control Module (TIM) The TIM is the interface between a ROD crate and750

the ATLAS trigger system. It receives a TTC fibre-link from a Local Trigger Processor (LTP), car-
rying LHC bunch crossing (BC) and orbit signals, trigger signals such as the Level 1 Accept (L1A)
and the trigger type, and control/synchronisation signalssuch as the event counter reset (ECR) and
the synchronisation (SYN). These signals are distributed to the RODs via a custom backplane in-
stalled in the lower part of the VME crate. On the same backplane, the busy signals generated by755

the RODs pass to the TIM. The TIM can create a collective ROD Busy signal and send this signal
to the LTP. The LPT on reception of the Busy signal stops the L1A to the detector electronics, thus
allowing the front-end and ROD buffers to be emptied. Several features are implemented in the
TIM to operate on the trigger signal. These include programmable delays on distributed triggers,
generation of trigger bursts and strobe signals having a fixed delay from a L1A. Moreover, the TIM760

can be used as a local trigger generator with a programmable rate. This has been very useful for
studying ROD and DAQ behaviour for simulated event rates.

Read Out Driver (ROD) The structure of the ROD is outlined in Fig. 12. Three main sections of
the design are the control path, data flow path, and the Digital Signal Processing (DSP) Farm. The
control path section consists of two Xilinx Field Programmable Gate Arrays (FPGA) and a Texas765

Instruments Fixed Point Digital Processor (TI 320C6201) operating at 160 MHz with a 32 MB
SDRAM module. The Program Reset Manager (PRM) FPGA functions as a VME slave controller,
allowing read and write access to all ROD and BOC registers and a configuration controller for the
data path FPGAs. In order to allow the users to easily upgradethe firmware on the ROD, the PRM
FPGA allows VME access to an on-board flash memory chip that stores the FPGA configuration770

data. The Master DSP receives commands and transmits replies to the VME host and coordinates
the configuration, calibration and data-taking modes of theROD. The ROD Controller FPGA is
used in the control path as an interface for the Master DSP to the DSP farm, the BOC, and all

3From Concurrent Technologies Corporation, http://www.ctc.com
4From Intel Corporation, http://www.intel.com
5From Tundra Semiconductor Corporation, http://www.tundra.com
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Figure 12. Block diagram of the ROD.

of the internal ROD registers in the data flow FPGAs. It also controls all of the required, data-
flow-path specific, real-time functions on the ROD, including serial transmission of commands775

to the FE modules (two independent command streams can be sent to two modules or group of
modules), calibration mode trigger generation, and transmission of TIM generated triggers and fast
commands. In summary, these are the main actions performed by the control path block:

• full control of ROD reset and FPGA configuration;

• receives and executes commands from the SBC via VME;780

• receives module configurations via VME and stores them in Master DSP memory;

• transmits configuration data to the modules;

• control of calibration procedures, transmitting triggersand configuration data to FE modules;

• control of FE module data histograms;

• propagation of trigger commands from the TIM to the FE modules.785

The structure of the ROD Data Flow Section is outlined in the block diagram of Fig. 13. The
data flow section receives serial data from the FE modules, packs the individual module fragments
into a single ROD fragment and sends it to the ROS via the S-Link. Normal event data flows
through the ROD via the Input Link Interface, which leaves the data unchanged. It can, however,
trap the serial data stream in FIFOs (used in module configuration or to trap an event for diagnos-790

tics). The FIFOs can also be loaded with events for analysis by the ROD for diagnostics. After the
Input Link Interface, the event data enters the Formatters.The Formatters convert the serial data
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Figure 13. Block diagram of the ROD data flow section.

streams to parallel format, and fill the derandomising buffers used to queue events for transmission
to the Event Fragment Builder (EFB) FPGA. An event is transmitted from the Formatters to the
EFB after the Controller FPGA sends a command notifying thata Level 1 Accept has been sent795

to the modules. The ROD Event Fragment is constructed in the EFB using the ATLAS Event ID
data that was transmitted from the controller FPGA. In normal data taking, the primary source of
the ATLAS Event ID data is the TIM with the ROD providing some additional information. After
the header and mode information is sent to the EFB, the ROD Controller FPGA issues one token
to the Formatters, and event data is pushed to the EFB. The EFBchecks L1ID and BCID values800

and records errors. It also records any errors that were decoded or flagged by the Formatters. The
event data are then stored in two derandomising FIFOs. Thereare two identical engines in the
EFB each capable of transferring 32-bit words at 40 MHz yielding a maximum rate of 320 MB/s.
When an event is ready (header, data body and trailer in the FIFOs), it is transmitted to the Router.
The Router has two main functions. The first one, which is for the main physics data path, is to805

transmit 32-bit data words to the S-Link at 40 MHz. If the S-Link is receiving data faster than it can
transfer to the ROS, the S-Link can assert Xoff to apply back pressure to the ROD data path. When
back pressure is applied, read out of data from the EFB FIFO isstopped. When the EFB memories
are almost full, back pressure is applied to the Formatters.This will stop event data transmission
from the formatter link FIFOs. The second function of the Router is to trap data for the DSPs.810

This is performed with no effect on the S-Link data during normal running. When the ROD is in
calibration mode, the DSPs can assert back pressure to pausethe ROD data flow.

Finally, the ROD is equipped with four ’Slave’ DSP processors (TMS320C6713)) with 256
MB memory each. They are connected to the Router FPGA from which they can sample the
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produced ROD fragments. Different tasks can run on the DSP processors to analyze captured815

events: monitoring task, used during normal data taking to compute average occupancy and detect
noisy pixels or data transmission errors. Calibration tasks accumulate histograms during the multi-
dimensional scan procedure and perform an analysis to reduce the data volume to be transferred to
the SBC. During data taking, the DSPs spy on the data-flow at the maximum possible rate without
introducing dead time or applying back pressure on the data flow path. During calibration, on820

the other hand, the slave DSPs analyse fragments, so they actually become the most important
limiting factor on the data rate. For this reason the code of the calibration task must be optimised to
maximum efficiency using the 128 KB internal DSP fast memory to fill the occupancy histograms.

4.5.2 ROD Crate Software and Calibration Analysis Farm

The ROD Crate software is the interface between the ATLAS RunControl and the pixel detector825

DAQ.
For each ROD in the crate, a ROD Interface thread is created. This gives access to the basic

functionalities that an external application can perform on the modules using the ROD. The imple-
mented functions range from very basic commands (like ROD module reset and configuration) to
complicated scan procedures. The ROD software interfaces are based on Remote Procedure Calls830

(RPC). They use a Common Object Request Broker Architecture(COBRA) layer called Interpro-
cessor Communication (IPC) which is used in most ATLAS DAQ applications. These interfaces
can be accessed either locally in the ROD, from another process running in the SBC, or from a
process running on a remote CPU. Only one application at a time can be allowed access to a given
ROD; for this reason, each SBC runs a Crate Broker. Each process accessing a ROD must first ask835

the Crate Broker, verify if the requested resource is free and allocate it. Only at this point is access
to the ROD Interface granted. The last element of the ROD Crate software is the Run Controller.
This process is a local receiver of the commands issued by thecentral ATLAS Run Control.

During normal data taking, the ROD Crate Run Control allocates all the ROD Interfaces and
executes the transitions (INITIALISE, CONFIGURE, START, STOP) as indicated by the global840

Run Control. During calibrations, the Run Control disconnects the RODs, which are then con-
trolled by a Calibration Console, controlling the calibration procedure. The interface/broker mech-
anism gives the possibility to run a calibration or a debugging session on a ROD while the others
are taking data. Occasionally the amount of data produced during a calibration may be too large
to fit into the SBC memory. The histograms are then immediately moved (again using IPC) from845

the SBC to a remote analysis farm, which takes care of the finaldata analysis, including generating
new configuration sets based on the tuning/calibration procedures, and archiving the results. Con-
sequently, the memory of the SBC is not saturated, and a new scanning procedure is immediately
started, while the analysis farm is analysing the previous data set.

4.6 Detector Control System (DCS), Power Supplies, and Interlock System850

The operation of the pixel detector modules and the on-detector opto-components requires a com-
plex power supply [38, 39] and control system [40, 41]. The following supplies are required at the
module and opto-board level:

• VDDA: analog low-voltage supply for the FE chips;
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• VDD: digital low-voltage supply for the FE chips and the MCC;855

• VDET: high-voltage supply to bias the sensor;

• VVDC: low-voltage supply for the VDC and DORIC chips;

• VPIN: PiN diode bias voltage;

• VISET: digital voltage to adjust the VCSEL bias;

Power supply requirements for pixel modules and opto-boards are summarised in Table 5. The860

adjustment of the operating conditions of the system requires a large modularity. Robust software
packages are used to monitor and control the hardware. Thereis, in addition, an independent
interlock system that focuses on safety for the equipment and human operators.

Supply Supply Supply Nominal Nominal Nominal Worst Worst Worst

Type Voltage Current Voltage Current Power Voltage CurrentPower
[V] [mA] [V] [mA] [mW] [V] [mA] [mW]

Module
VDDA 10 1500 1.6 1100 1760 2.1 1300 2730
VDD 10 1200 2.0 750 1500 2.5 1000 2500
VDET 600 2 600 1 600 600 2 1200
Total 3860 6430

D-board
VVDC 10 800 2.5 280 700 2.5 490 1225
VPIN 20 20 10.0 – – 20 20 400
VISET 5 20 1.0 – – 2 20 40
Total 1665

B-board
VVDC 10 800 2.5 420 1050 2.5 770 1925
VPIN 20 20 10.0 – – 20 20 400
VISET 5 20 1.0 – – 2 20 40
Total 2365

Table 5. Specifications for module and opto-board power supplies. D-boards serve disk and layers 1 and 2,
B-boards serve B layer.

4.6.1 The Hardware of the DCS

The scheme for the powering, control and interlock system isshown in Fig. 14. The main compo-865

nents of the pixel DCS are:

• the power supplies to operate the sensors, front end chips and opto-boards;

• the Regulator Stations;

• temperature and humidity sensors plus monitoring devices for their readout;
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• multi-channel current measurement units;870

• the Interlock System;

• the DCS computers to control the hardware.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�Vvdc Data cover

CAN open

LV PS

HV PP4

DCS PCs

LV PP4

T

TCP/IPCAN open

System

BBIM

Opto BoardDetector Module

Regulator Station

SC−OLinkHV PS

Interlock

Data door

VddHV

Environm.
sensors

BBM

T

Vpin/Viset

T

Vdda

BOC

power lines data

D
is

ta
nc

e 
fr

om
 in

te
ra

ct
io

n 
po

in
t

interlock signals

DCS signals

control
lines

Figure 14. Overview of the hardware of the pixel detector control system.

To comply with the ATLAS grounding scheme, all power supplies and monitoring systems must
be floating. Radiation damage requirements during operation of the sensors and the on-detector
electronics imply that all power supplies have adjustable voltage outputs. For operational safety,875

over-current protection and interlock input signals are available for all the power supplies. The pixel
power supply system has five main components: low voltage power supply (LV-PS), high voltage
power supply (HV-PS), Regulator Station, Supply and Control for the Opto Link (SC-OLink), and
the opto-board heater power supplies. Two low voltages supply the analog (VDDA) and digital part
(VDD) of the front-end read out electronics. Both are delivered by the LV-PS, which is a commercial880

component – the PL512M from WIENER6.
To protect the sensitive front end electronics against transients, remotely-programmable Reg-

ulator Stations are installed as close as possible (approximately 10 m) from the detector [42]. The
Regulator Stations provide individual low-voltage power outputs with low ripple and protect the
integrated circuits against transients up to 4 V. A Regulator Station consists of 12 circuit boards and885

a controller housed in a custom crate. One station can provide power for up to 84 detector modules
and can also provide power to the opto-boards.

The pixel sensors are biased by the high voltage VDET from the HV-PS. The HV-PS is assem-
bled with EHQ-F607n_405-F modules provided by Iseg7. The LV-PS and HV-PS are, respectively,

6WIENER, Plein & Baus GmbH, Burscheid, Germany
7Iseg Spezialelektronik GmbH, Rossendorf, Germany
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connected to the low voltage Patch-Panel-4 (LV-PP4) and to the high voltage Patch-Panel-4 (HV-890

PP4) that are used to distribute the power and monitor the currents of the individual lines.

The SC-OLink, a complex channel consisting of three voltagesources and a control signal,
delivers adequate levels for the operation of the on-detector part of the optical link. Monitoring
of temperatures and of humidity is performed by the BuildingBlock Monitoring (BBM) and the
Building Block Interlock and Monitoring (BBIM) crates. While the BBM provides a reading of895

values, the BBIM additionally creates logical signals, which are fed into the Interlock System. All
components of the LV-PS, HV-PS, SC-OLink as well as the BOC boards are connected to the hard-
ware based Interlock System that acts as a completely independent system. Several units guarantee
safety for human operators as well as protect detector parts. The Interlock System has high mod-
ularity; more than a thousand individual interlock signalsare distributed. The high modularity has900

been chosen to minimize the number of detector modules out-of-service, resulting from failure in
a single module or system component. The Regulator System and some parts of the Interlock Sys-
tem (those installed inside the ATLAS detector) had to pass requirements pertaining to radiation
tolerance.

Besides the LV-PS and HV-PS, all other components in the system are custom designed,905

adapted to the specific needs of the pixel detector and use theEmbedded Local Monitoring Board
(ELMB) [43] for monitoring through the DCS. ELMB is the ATLASstandard front end I/O unit
for the slow control signals. The Control Area Network (CAN)interface of the ELMB and its
CAN-open protocol ensure that the communication is reliable and robust. Different Openness,
Productivity, Collaboration (OPC) servers are used to integrate the hardware into the higher level910

of the software. All together 630 CAN nodes on 43 CAN busses and 48 TCP/IP nodes for the LV
power supplies are used to build the pixel control network. In total, more than 44000 variables need
to be monitored.

4.6.2 The Software of the DCS

The DCS software establishes the communication to the hardware, to support the operator required915

monitoring and control tools, and provides automatic safety procedures as well as easier operation
of the detector for non-DCS experts. Additionally, detector operation requires good coordination
between the DAQ and DCS actions. Data relevant to the offline analysis must be recorded and
stored in the conditions database. The core of the DCS software is the Prozess- Visualisierungs- und
SteuerungsSoftware (PVSS).8 These projects run as a distributed system on eight control stations.920

Since each part of a distributed system has its own control and data managers (processes inside
PVSS), an independent development and operation of the different projects is possible. The core of
the control software is the Front-end Integration Tools (FIT), which establish the communication
with various hardware components. For each hardware component, like the HV-PS, the LV-PS and
the different devices using the ELMBs, dedicated FIT exist.Each FIT consists of an integration925

and a control part. The integration part initialises each given hardware component and creates the
data structures required to control it. The control part of the FIT supervises the operation of the
same component. The FITs are mainly used by a DCS expert who needs to check the behaviour
of the hardware. For persons who run shifts, a detector-oriented view of the hardware is provided

8PVSS is made by ETM, Eisenstadt, Austria.
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by the System Integration Tool (SIT). The mapping of read-out channels to the detector devices is930

done by the SIT. The SIT creates a virtual image of the detector inside the DCS. It combines all
information which is relevant to the operation of the detector unit such as a half stave, a disk or
even the full detector. Furthermore, the SIT is responsiblefor storing the data in the conditions
database.

The control software used to operate on the detector is the Finite State Machine (FSM). This935

software was developed, in common, for the four largest LHC experiments [44]. The FSM uses
geographical, organised data structures, created by the SIT, and provides the user with a set of
commands to act on small or large fractions of the detector simultaneously. The detector status is
returned by the FSM. Furthermore, proper settings and special power-on sequences are performed
automatically by the FSM. The FSM also provides the link to the ATLAS-wide control system. As940

part of the overall ATLAS control system, the pixel FSM will receive commands from the ATLAS
FSM during normal data taking. The communication between DAQ and DCS is provided by DAQ-
DCS Communication (DDC), which provides command transfer from the DAQ system to DCS,
publishes DCS values to the DAQ and vice versa. For the tuningof the optical links, the DDC is
critical.945

The DCS hardware and software system has been fully exercised in various configurations
during the prototype and construction phases of the pixel detector, namely in test beams, with
cosmic ray tests and during the integration of the pixel detector into ATLAS [45,46].

5. Sensors

Sensors are the sensitive part of the pixel detector used forcharged particle detection and func-950

tion as a solid-state ionization chamber. The sensor must meet exacting geometrical constraints
concerning thickness and granularity as well as have a high charge collection efficiency, while sus-
taining a massive amount of ionizing and non-ionizing particle radiation damage. On one hand,
this is reflected in the selection of the bulk material and, onthe other hand, it impacts the design of
the pixel structure itself.955

5.1 Design

The ATLAS pixel sensor is an array of bipolar diodes placed ona high resistivity n-type bulk close
to the intrinsic charge concentration. The sensor is made byimplanting high positive (p+) and
negative (n+) dose regions on each side of a wafer. An asymmetric depletion region at the p+-n
junction operates in reverse bias and extends over the wholesensor bulk volume. Here, one is960

able to collect and detect charge carriers generated by ionizing particles passing through the active
volume. The sensor design guarantees single pixel isolation, minimizes leakage current and makes
the sensor testable as well as tolerant to radiation damage.

The pixel sensor consists of a 256± 3µm thick n-bulk. The bulk contains n+ implants on
the read-out side and the p-n junction on the back side. For each sensor tile, the 47232 pixel965

implants are arranged in 144 columns and 328 rows. In 128 columns (41984 or 88.9 %) pixels have
implant sizes of 382.5×30µm2 with a pitch corresponding to 400×50µm2, and in 16 columns
(5248 or 11.1 %) pixels have implant sizes of 582.5× 30µm2 corresponding to a pitch of 600×
50µm2. In each column eight pairs of pixel implants, located near the center lines, are ganged to
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a common read-out, resulting in 320 independent read-out rows or 46080 pixel read-out channels.970

This arrangement was chosen to allow for the connection of the sensor tile to 16 electronic front-
end chips. Aside from increased leakage current, radiationdamage will invert the sensor bulk and
then gradually increase the depletion voltage. For unirradiated sensors, the depletion starts at the
back (p) side, where the pixels are not isolated from each other until full depletion of the bulk.
Irradiation of the bulk leads to a change in the effective doping concentrationNeff. FirstNeff drops975

off and then runs through type inversion, after whichNeff increases [47]. At type inversion, the
junction moves to the front (n) side, isolating the pixels and enabling operation even if the bulk
cannot be fully depleted. Maximum achievable depletion is desirable to maximize the signal. The
advantage of the depletion zone for the n+-in-n design is shown in Fig. 15.

(a)

Front-end electronics

-V
bias

0V

0V

n-type bulk

depleted

(b)

Front-end electronics

-V
bias

0V

0V

p-type bulk

depleted

Figure 15. Comparison of depletion zones in n+-in-n pixel sensors before (a) and after (b) type inversion.
Before type inversion the electrical field grows from the backside and reaches the pixel implants (full deple-
tion). After type inversion the depletion zone grows from the pixel side and allows operation even if the bulk
is not fully depleted.

Oxygen impurities have been introduced in the bulk to increase tolerance of the silicon against980

bulk damage caused by charged hadrons [48,49]. A comparisonof the evolution of charge densities
in standard and oxygenated silicon during irradiation withhadrons is shown in Fig. 16a. In addition
to the continuous irradiation of the sensors affecting the induced doping concentration,Neff also
evolves due to thermal effects. On short time scales,Neff drops off (beneficial annealing), runs then
through a minimum of constant damage and finally increases again on longer time scales (reverse985

annealing). See Fig. 16b.
While the beneficial annealing is not altered in oxygenated silicon, the constant radiation

damage (NC) is reduced, and the reverse annealing (NY , see Fig. 16b) is significantly slowed
down [48, 49], producing a lower overall effective charge density in similarly irradiated samples
undergoing identical annealing scenarios. Sensors built from such material exhibit deeper depletion990

zones at the same bias voltage and full depletion at a lower bias voltage.
By choosing an appropriate temperature profile (i.e. operation at 0oC, short periods of+20oC

during detector access, and cooling down to−20oC during longer operational breaks in the ex-
periment), one tries to keep sensors near the lowest possible Neff and avoid reverse annealing, so
as to derive benefit from the lowest possible depletion voltage. Model calculations (Fig. 17) of995

the combined effects of bulk irradiation and annealing havebeen performed [50]. The increase of
the intrinsic charge carrier concentration due to radiation exposure leads to higher leakage currents
and also contributes to noise. Cooling of the sensors to values well below room temperature helps
reduce these effects.
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Figure 16. (a) Evolution of effective charge densities and full depletion voltage in standard and oxygenated
silicon during irradiation with various hadrons. In oxygenated silicon the increase after type inversion in-
duced by charged particles (pions, protons) is significantly lower. (b) Evolution of the effective doping
concentration due to annealing and reverse annealing effects. The parameterization of this evolution is the
so-called “Hamburg model” and represents an important input to the ATLAS pixel sensors, which will oper-
ate near the point of minimal depletion voltages. In oxygenated silicon, bothNC andNY are reduced [48,49].

The positive and the negative implanted sensor wafer sides are both structured by mask pro-1000

cesses for implantation, metalisation and deposition of silicon-oxide and silicon-nitride. This
double-sided processing demands precise mask steps and incorporates front-to-back mask align-
ment of a few microns, which makes the manufacturing processdemanding. However, this allows
for a segmented n+ implantation used for the definition of pixel cells and a guard ring structure
on the p+ implanted wafer side, locating the main voltage drop on the sensor surface opposite to1005

the bump connections [51, 52]. The sensors can be fully depleted before type inversion with bias
voltages below 100 V. After type inversion the depletion zone grows primarily from the segmented
n+ implant when the region of highest electric field in the bulk now converts to p-type.

On the sensor front side, pixel structures are arranged and isolated by moderated p-spray [52,
53] implants, which have proven to be radiation tolerant with respect to surface damages induced1010

by ionising charged particles for doses up to 500 kGy in silicon. The principal layout is shown in
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(e)

Figure 17. Change of the effective doping concentration (left scale) and the voltage necessary for full de-
pletion (right scale) of oxygenated sensors according to irradiation and annealing effects under the Hamburg
model for the two inner pixel detector layers in a standard (solid) and elevated (dashed) radiation scenario.
(a) Layer 1 at 8.85 cm radial distance from interaction pointwith a standard fluence of 0.9×1014cm−2year−1

(after the 3rd year of operation), (b) the same as (a) with a 50% elevated fluence, (c) b-layer at 5.05 cm radial
distance from the interaction point with a standard fluence of 2.4×1014cm−2year−1, (d) the same as (c) with
a 50 % elevated fluence. The enlarged detail (e) shows the evolution of the sensor characteristics during one
year of assumed detector operation: 100 days of beam operation with irradiation at an operation temperature
of 0oC, a period of about 30 days at+20oC during detector access, and cooling down to−20oC during the
rest of the year.

Fig. 18a. The dose of implant ions leading to the moderated p-spray isolation is regulated with a
help of a nitride layer, which is opened during an additionalmask step, creating a deeper high dose
p-spray region in the center of the inter-pixel gap and a shallower low dose layer everywhere else.
This isolation technique avoids high field regions in the interface between the pixel isolation and1015

the bulk and ensures radiation tolerance of the design [54,55]

All 46080 read-out channels of a sensor tile are connected toa common bias grid structure [52]
(Fig. 18b) by employing a punch-through connection technique to each channel. The method biases
the entire sensor without requiring individual connections, but still ensures isolation between pixels.
This bias grid has been used for quality assurance measurements before the read-out electronics are1020

connected to the sensors. An opening for each pixel in the passivation layer of the sensor allows for
a connection to each channel using a bump-bond technique (see section 6) to front-end electronics
(see section 4), which is DC-coupled and provides biasing for each individual pixel.

5.2 Prototyping and Tests

Bulk and surface design features of the sensors have been extensively tested during the prototype1025

phase [55] and a dedicated pixel sensor quality assurance plan was developed [57]. The sensor
layout has been designed on four-inch-diameter, double-sided wafers, which include three sensor
tiles of about 18 mm×62 mm each. During the prototype phase, dedicated test structures were

– 36 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
4
0
8

(a) (b)

Figure 18. (a) Principal layout of the moderated p-spray isolation which consist of high and low dose areas
between the n+ pixel implantations in the n bulk. Compared to other isolation profiles like p-stop [56] and
p-spray [53] high field regions are avoided in the transitionregions between pixel and bulk. (b) Layout detail
of the bias grid [52] visible in the production mask for a pixel double row.

(a) (b)

Figure 19. (a) Geometrical layout of the sensor wafer. Central large structures 01, 02 and 03 are the sensor
tiles carrying 46080 read-out channels employed in the ATLAS pixel sensor modules; structures 04 to 35 are
dedicated test structures to monitor the quality of prototyping and production. (b) A photograph of a 4-inch
diameter ATLAS pixel sensor wafer (p-side view).

developed. The test structures were placed on the ATLAS pixel sensor wafer surrounding the
sensor tiles to allow for dedicated electrical tests of various design features for the sensor (Fig. 19).1030

The sensor quality control included mechanical as well as electrical inspections and tests. Ex-
amples of visual and mechanics tests include unique wafer identification with the help of scratched
serial numbers, visual inspection of the surface quality, acheck of the mask alignments, and pla-
narity as well as thickness measurements of wafers. Electrical tests included measurement of the
leakage current and the capacitance of diodes using the guard ring structure. Leakage currents1035

were monitored on sensor tiles, and on test structures. Current and capacitance measurements were
performed on oxide structures.

As an example of the bulk characteristics, the dark current on sensor tiles was monitored. The
break down voltage was required to be well above 150 V. Fig. 20shows an example of measure-
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Figure 20. Examples of dark current vs. bias voltage curves on pre-series sensors tiles. While the two blue
curves are examples of nearly perfect diodes, the black curve shows a break down between 150 and 200 V,
and the red curve shows a very steep break down behaviour nearthe typical depletion voltage, indicated a
defect on the n-side of the sensor.

ments performed during the prototype phase. The two blue curves are examples of nearly perfect1040

diodes, the black curve shows a breakdown between 150 and 200V and the red curve shows a very
steep breakdown behaviour near the typical depletion voltage, indicating a defect on the n-side of
the sensor.

Since the moderated p-spray dose is one of the critical stepsin the sensor design, the mea-
surement of the p-spray dose is an important quality controltest. Here, a dedicated punch-through1045

structure as well as an oxide structure is needed to determine the oxide capacitance. An example of
a punch through measurement is shown in Fig. 21. The idea of this measurement is to determine
the currentI between an individual pixel and the bias grid (Fig. 21a) as a function of the potential
difference∆V, while the sensor bulk is biased at−150 V. The resulting current (Fig. 21b) increases
for good isolations at∆V > 1 V. This together with the oxide measurement (not shown) leads to the1050

p-spray dose [57]. This example demonstrates the need for advanced quality control measurements
to assure the radiation hardness of production sensors. A few sensors were rejected during the
production process.

One important aspect of the present ATLAS pixel sensor is theoperation under irradiation,
especially near the end of the sensor’s lifetime. Here, the main limitation of the sensor is the1055

trapping of charge carriers in the silicon bulk, which leadsto decreasing values for the collected
charge during the operation time of the detector. Trapping times have been determined in test beams
[58], and laboratory set-ups [59]. Based on the operation model (see Fig. 17) of the ATLAS pixel
sensor, the expected collected charge for minimum ionizingparticles passing through the 250µm
thick bulk is predicted to be between 15 and 19 ke after irradiation fluxes of 8–12× 1014cm−2

1060

[60]. These values are expected after 10 years of operationsfor sensors in Layer 1 of the ATLAS
pixel detector. The values agree nicely with those derived from test beam results performed using
production-like sensors [61]. Further performance features, including those for the sensors, were
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(a)

n-type bulk

p+

n+ pixel
implantation

ground

- V n+-bias 
structure

moderated
p-spay

operation voltage -150V

I

(b)

Figure 21. (a) Electrical set-up to monitor the bias dot current vs. thepotential difference test on a depleted
substrate. (b) Example of punch-through current measurements on several prototype structures at the nomi-
nal bias voltage of 150 V. The left red curve is an example of a below specification low potential difference,
which occurred during early prototyping, compared to laterproduction, which fulfilled the isolation criteria
of more than 1 V.

extracted under test beam conditions, the results of which are summarized in section 7.

5.3 Production and Quality Assurance1065

Sensor tiles have been produced by two independent vendors9, who went through the prototype
phase and qualification process. Based on the experience during prototype development, special-
ized quality assurance procedures were employed for the series production of sensors [62, 63] and
were carried out as a collaborative effort at four differentpixel sensor institutes. An extensive cross
calibration of mechanical and electrical measurements wasperformed during these processes.1070

9CiS Institut fuer Mikrosensorik gGmbH Konrad-Zuse-Strasse 14, D-99099 Erfurt, Germany http://www.cismst.de
and ON Semiconductor Czech Republic, a.s. 1. maje 2230, CZ-75661 Roznov pod Radhostem, Czech Republic
http://www.onsemi.com
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Figure 22. Tested sensor tile output in total and per quarter during theproduction process.

The production rate of ATLAS pixel sensors is shown in Fig. 22. More than 2200 sensors
successfully passed through the quality assurance processand were available for hybridisation [64]
to the front-end electronics.

6. Modules

6.1 Overview1075

The sensitive area of∼1.7 m2 of the ATLAS pixel detector is covered with 1744 identical modules
with a small exception (see below). Each module has an activesurface of 6.08× 1.64cm2. A
module is assembled from the following parts:

• the sensor tile containing 47232 pixels as described in section 5;

• sixteen front end electronics chips (FE) each containing 2880 pixel cells with amplifying1080

circuitry, connected to the sensor by means of fine-pitch bump bonding (see section 6.2);

• a fine-pitch, double-sided, flexible printed circuit (referred to as a flex-hybrid) with a thick-
ness of about 100µm to route signals and power;

• a module control chip (MCC) situated on the flex-hybrid;

• for the barrel modules, another flexible foil, called a pigtail, that provides the connection1085

to electrical services via a microcable, whereas for the disk modules, the microcables were
attached without the pigtail connection [4].

The concept of the ATLAS hybrid pixel module is illustrated in Fig. 23. Sixteen front-end
chips are connected to the sensor by means of bump bonding andflip-chip technology. Each
chip covers an area of 0.74×1.09cm2 and has been thinned before the flip-chip process to 195±1090

10µm thickness by wafer-back-side grinding. A sizeable fraction (≈25%) of the front-end chip is
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Figure 23. The elements of a pixel barrel module. Most of the thermal management tile (TMT) on to which
the module is glued is suppressed.

dedicated to the End-of-Column (EoC) logic. Once bonded, most of the EoC logic extends beyond
the sensor area. Wire bonding pads at the output of the EoC logic are thus accessible to connect
each front-end chip to the flex-hybrid by means of aluminum-wire wedge bonding. Copper traces
on the flex-hybrid route the signals to the MCC. The MCC receives and transmits digital data1095

out of the modules. The flex-hybrid is also used to distributedecoupled, low-voltages to all the
chips. The traces are dimensioned such that the voltage dropvariation is limited to≈50 mV in
order to keep all the chips in the same operating range. The back-side of the flex-hybrid must be
pinhole free, since it is glued to the high-voltage side of the sensor. A multiple solder mask layer
was, therefore, used and all parts were tested up to 1000 V. Since all module components must1100

withstand the lifetime radiation dose, polyimide was used as the base materials for the flex-hybrid
with adhesiveless metalisation. Passive components are added to the flex-hybrid for decoupling
and filtering of the front-end chips. The module temperatureis remotely monitored via a Negative
Temperature Coefficient (NTC) thermistor loaded on the kapton circuit, and a fast interlock powers
off a module when overheating occurs.1105

After a lifetime radiation dose, a module is expected to draw1.3 A at 1.7 V from the analog
supply and 0.9 A at 2.1 V from the digital supply. This includes the voltage drops from the pigtail
(for barrel modules) and the flex-hybrid, but not the voltagedrop from the microcables. In addition,
the sensor bias draws 1 mA at 600 V, giving a total power of about 4.7 W. However, it is possible
that the analog or digital supply voltages may need to be increased in order to recover performance,1110

which could result in a total power of up to about 6 W.
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The bump bonding and flip-chip operation results in a so-called bare module. The sixteen
chips of an assembled bare module are first tested on a probe station to detect defects. Rework on
modules can still be done at this point of the assembly sequence.

Region in between Chips1115

The sensor pixels have dimensions of 50µm×400µm, with the exception of about 11% which
have a size of 50µm×600µm, to allow for a contiguous sensitive area between chip boundaries
in the long pixel direction. In the other direction, 2 x 4 pixels under each of the two adjacent chips
cannot be covered by active pixel circuitry. These special pixels are ganged through metal lines on
the sensor, with one of 4 + 4 neighboring electronics pixels at the top of the columns, as is illustrated1120

in Fig. 24. The resulting hit ambiguity is resolved by off-line pattern recognition software. There
are five pixel types with decreased performance due to added input-capacitance and ambiguities
(see section 6.6). These special pixels are: long (10.6%), ganged (2.2%), inter-ganged (1.6%),
long-ganged (0.3%) and long inter-ganged (0.2%).

Figure 24. End-region of the pixel detector at the edge of four FE-chips. The area of the sensor covered by
the chip edges is marked in grey. The pixels in between the chips (white rectangles) are connected through
metal lines to another pixel underneath the chips.

6.2 Bump Bonding1125

Bump bonding is extensively used in the electronics industry for the attachment of integrated
circuit die to printed circuit boards or other substrates. Two different bump bonding techniques
have been used for ATLAS: electroplated-solder (PbSn) bumping [65–67] and evaporative-indium
bumping [68]. Both bump deposition processes are done at thewafer level. The principle of a
bumped sensor – electronics pixel element is sketched in Fig. 25. The substantial demands on the1130

handling require that the wafers be bumped with their original thickness (∼ 700 µm for the FE-I3
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Figure 25. Sketch (not to scale) of the cross section of a hybrid pixel detector, showing one connection
between a sensor and an electronics pixel cell. A particle track releases ionisation in the sensor volume.

wafers). Wafer thinning is done after bump deposition by covering the bumps with a photoresist
layer and a UV releasing tape for bump protection and for handling. The integrated circuit wafers
are then thinned by backside grinding to about 195µm. They are diced immediately afterwards and
then the die are tested again on a probe station to assure thatthey are still functional and ready for1135

the flip-chip process. The dicing was performed before thinning by making 250µm deep cuts in
the 700µm thick wafers. Separation of the chips occurs by the end of the back-grinding operation
(so-called dicing-before-grinding). This was done to obtain high-quality diced edges.

6.2.1 The Solder Bumping and Bonding Process

In eutectic PbSn solder bumping [65–67], the solder is deposited through electroplating. Under1140

bump metalisation (UBM), which consists of several metal layers, is deposited on the contact pads.
A PbSn cylinder is galvanically grown and melted to a sphere on the integrated circuit wafer (see
Fig. 26a), while the sensor wafer receives only the UBM [66, 69]. The parts are mated by flip-
chip assembly with reflow, which provides self-alignment. The process flow is described in [70].
The distance between a chip and the sensor is about 20 – 25µm, thus minimizing the cross-talk1145

between the electronics and the sensor. The connection resistance is smaller than 1Ω, and the
ultimate shear stress is≈50MPa. A picture of PbSn bumps after reflow on an ATLAS FE-chipis
shown in Fig. 26b.

6.2.2 The Indium Bump Bonding Process

In the case of indium bonding, the bumps are grown by depositing evaporated indium on both1150

mating parts [71]. No under bump metalisation is needed. Thebump pitch is also 50µm, but
the bump height is limited to 10µm due to the use of a lift-off process for the removal of the
polyimide evaporation mask. Mating is obtained by In-In thermocompression. The process flow
is described in [70]. Fig. 27 shows a micrograph of 50µm pitch indium bumps deposited on two
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(a) (b)

Figure 26. (a) Schematic description of a eutectic PbSn solder bump [65–67] and (b) rows of a PbSn bumps
(courtesy IZM-Berlin).

glass samples and then flip-chipped together [68] at a temperature of∼100◦C applying a pressure1155

of about 20N/cm2 per chip. The distance between chip and sensor after bondingis ≈10µm.

(a) (b)

Figure 27.Micrograph of a Indium bump deposition on silicon at 50µm pitch (a) and of a flip-chip assembly
of two 50µm pitch bump arrays (b) on glass substrates (courtesy SELEX Sistemi Integrati, Rome) [68].

6.3 Quality Control of Bump Bonded Assemblies

Inspections before and after flip-chip assembly were crucial to obtain the highest yield for func-
tional pixel modules. Automated inspection of bumped wafers with the combined use of a video
camera and laser interferometry allowed the manufacturer to find missing bumps, merged bumps,1160

deformed bumps or other defects as well as to measure bump heights on wafers. Inspection with
high resolution (2µm) X-ray machines allowed one to detect misalignment or merged/bridged
bumps previously not detected or caused by the flip-chip process. Both solder (about 45%) and
indium (about 55%) bump bonding have been used to produce pixel modules with bump defect
rates of≈10−5–10−4 at the wafer level and≈10−4–10−3 after the flip-chip process.1165

6.4 Reworking of Bump Bonded Assemblies

All modules were built with known good die (KGD) i.e. all die were tested prior to flip-chip and
only the good ones were used. This is a crucial requirement asthe module yield goes with thenth
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Figure 28. Picture of an ATLAS pixel disk module.

power of the electronics chip yield,n being the number of chips-per-module.
All front-end chips were also electrically tested after bump bonding in order to check for dam-1170

age to the front-end electronics and to assess if the qualityof the electrical contact was adequate.
Both solder and indium bump bonded modules have been successfully reworked [69,72] with a

success probability of more than 95%. In both cases, the operation required heating and application
of a force to remove the integrated circuit, while leaving some metal on the bond pads. Afterwards,
a new IC is flipped to the sensor. The probability of properly connecting all pixels during a second1175

flipping is near 100%.

6.5 Module assembly

Once a bare module passed the acceptance test, it could be equipped with a flex-hybrid to provide
the connections between the Module Controller Chip and the front-end electronics and from the
Module Controller Chip to a microcable. A photograph of a disk module is shown in Fig. 28.1180

The flex-hybrid is a double-sided, flexible printed circuit with a 50µm substrate thickness and
25 µm thick copper lines10. It has been specifically designed to withstand the maximum 600 V
depletion voltage applied to the sensor. It also includes passive components for local decoupling
and an NTC for monitoring the module temperature.

To facilitate testing of flex-hybrids, they were attached tocustom-made printed circuit boards1185

(flex support card or FSC), which were used for handling the flex-hybrids themselves and for
handling after attaching the flex-hybrid to a module. A module is cut out from the FSC just prior
to loading on a local mechanical support [4].

Flex-hybrids for barrel and disk modules are identical. A difference appears only when the
connection to the services is made. For barrel modules, an additional flex circuit (pigtail) is glued1190

on top of the flex-hybrid and electrically connected by wire bonding. It has a 30-pin surface mount
connector that was fixed to the backside of the barrel-regionlocal mechanical support (stave) and
used for attachment of the low-mass microcables. Disk modules, on the other hand, have the
microcable soldered directly to the flex-hybrid [4].

10Manufactured by Dyconex AG Bassersdorf, Switzerland.
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There is a significant difference in the coefficient of thermal expansion between kapton and1195

silicon. The glue used for attachment of the flex- hybrid to the bare modules needed to be dis-
tributed to avoid any excessive mechanical coupling between the two. On the other hand, a strong
connection is required in the places where wire bonds are needed. Therefore, a strip of silicone
adhesive was deposited along the pads lines used for the interconnection between the flex-hybrids
and the front-end electronics, below the MCC, near the high voltage bonding pad and, for barrel1200

modules, below the pigtail attachment point.

6.6 Testing and Selection Procedures

After loading on a FSC, a module can be connected to a test setup using cables. The test setup in the
laboratory used LVDS signals. The readout chain and controlsoftware was the same as that used
for the front-end electronics and bare module testing, except now configured to communicate via1205

the MCC and using the microcable instead of probe needles forcommunication with the integrated
circuits.

A characterisation procedure [73,74] was used to certify ifa module was acceptable for opera-
tion, both electrically and mechanically. A ranking value was determined such that better modules
could be selected for the most critical parts of the detector. Different weights were assigned to the1210

number of missing or short bumps, the minimum digital voltage required for error-free operation,
sensor bias current, number of reworked wire bonds and otherparameters. In particular, a module
had to satisfy the following conditions:

• the electronics should be tunable and have enough operationrange to guarantee that there be
tuning capability to operate successfully even after radiation damage up to the lifetime dose;1215

• the bump bonding had not been damaged by the assembly procedure;

• the wire bonding of MCC and FE produced test bonds exceeding aminimum pull force
(every module had a number of spare wire bond locations that were pull tested).

The testing sequence proceeds as follows:

• a basic series of electronics tests is performed at room temperature after module assembly;1220

• modules undergo a mechanical stress test, being cycled 10 times between room temperature
and -30◦C, with a cycle length of about 2 hours;

• electronics tests at room temperature are repeated after thermal cycling and compared to the
initial tests;

• a complete module characterization is performed at approximately -10◦C, which is the ex-1225

pected operating temperature.

The last test was the most relevant for the definition of module quality and selection. Reduced
electronics test were also performed after loading modulesonto the local supports. This was done
to monitor for possible damage after loading, which could trigger the repair or replacement of a
module.1230

The room temperature tests consisted of:
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1. a basic functionality test: the module was configured, thereadout chain tested by digital
injection and the amplifier cells by analog injection;

2. a test of module tunability: thresholds are equalized to about 4000 e;

3. a threshold scan without depletion voltage applied to thesensor.1235

The first test was mainly a check of the wire bonding or for electrostatic discharge damage to the
electronics. In the second test, pixels can usually be tunedto the target threshold with a dispersion
of 60 e, and a noise which ranges between 120 e for standard pixels to 300 e for long and ganged
pixels (see Fig. 29).

The second and third tests were also sensitive to bump bonding properties. Pixels that failed1240

the tuning usually corresponded to a cluster of merged bumps. In this case, several cell amplifiers
were shorted together, resulting in reduced sensitivity tothe injected pulse. In the case of an
undepleted sensor, normal pixels are affected by the large parasitic capacitance of the sensor, but
pixels not connected to the detector stand out because the noise level remains low, independent of
the bias voltage applied to the sensor side. An example of a module with such defects is shown in1245

Fig. 30.
The testing of modules before and after the thermal cycles was also important. A systematic

problem in the encapsulation of wire bonds on the MCC was found, which resulted in unreliable
wire bonds. Correcting this problem required that a number of modules be reworked, and this
carried a ranking penalty. The comparison of bump damage between the initial assembly and after1250

thermal cycling, allowed one to disentangle damage due to bad handling during the assembly, and
damage due to weak bump bonds, for which there is a steady increase of disconnected bumps over
time. The full characterisation at the nominal operationaltemperature of -10◦C included additional
checks of tunability and operational range:

• the MCC operation was checked between 1.6 and 2.5 V, showing atypical turn-on at 1.8 V;1255

• front-end IC operation was tested within wide ranges of analog and digital low voltage supply
values (VDDA in the range 1.5-2.0 V, VDDD in the range 1.9-2.3V);

• The amplifier feedback current was tuned so that the average ToT response to a minimum
ionising particle corresponded to 30 clock cycles. With theLVL1 trigger latency expected
during operation, this setting provided 99.5% efficiency ina test beam (see section 7);1260

• Timing measurements have been performed to check the timewalk performance of the FE
electronics when attached to the sensor. The overdrive needed to assign a signal to the correct
beam crossing is about 1000 e;

• A measurement with the 60 keV x-ray from an241Am source checked the sensors’s response
(see Fig. 30).1265

The source measurement was particularly relevant in assessing module quality, since it is very
sensitive to noisy channels. The duration of the measurement wass chosen to reach an expected
occupancy of at least 10 hits for every pixel channel. Therefore, it was also effective in finding
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Figure 29. Threshold (top) and four noise (bottom) distributions - fordifferent locations and types/sizes of
pixels - of a typical module (normal, long, ganged, inter-ganged).

inefficient cells, coming from merged or disconnected bumps. The execution of the testing and
selection procedure was time consuming. The assembly of a module and its subsequent charac-1270

terization took a total of about seven days. Therefore the module assembly and testing capability
was replicated at six production sites. Sets of four or eightmodules were generally processed in
parallel at each site.

Modules were ranked using a single value, calculated from the test results. Different weights
were assigned to test measurements with the number of dead channels from the source test carrying1275

unit weight. The information combined in the overall ranking value included:
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• number of bad channels, including source scan results, digital tests and other analog mea-
surements;

• a χ2-like term, describing how the analog performance of a module differs from the average;

• penalties for anomalous values of the leakage current or module bowing, which could give1280

problems during operation;

• any repair operations performed, including the number of reworked wire bonds.
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Figure 30.Noise distribution for an indium-bumped module without sensor bias (top). Disconnected regions
are visible as low noise spots. For comparison (bottom) is a hitmap obtained with an241Am source. The
very dark rectangles correspond to capacitors or other components that shield the sensor from the source.

This ranking value was used for module selection for mounting on local supports. The distribution
of the ranking values is displayed in Fig. 31. The excess around 300 corresponds to the set of
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Figure 31. Module ranking distribution as described in the text.

modules that needed a full rebonding of the MCC, because of the encapsulation problem mentioned1285

above. The b-layer has been built using modules with rankingvalues lower than 60, corresponding
to a channel inefficiency better than 0.13%. Modules with ranking values higher than 1000 were
not accepted for assembly.

Analysis of the ranking showed an overall equivalence for all the assembly sites, while pointing
out a clear difference between the two bump vendors. The mainreason for the difference is the1290

higher number of disconnected bumps in the In-bumped modules. As stated before, a clustered set
of disconnected bumps may be the seed for a widening of a disconnected region. Because of this,
a ranking penalty was added for each FE chip containing more than 30 disconnected bumps. In
hindsight this penalty has been found to be quite conservative, but it is the main reason for the tails
in Fig. 31.1295

During the final phase of module production, when it was clearthat there were a sufficient
number of spare bare modules, only the ones with clusters of less than four disconnected bumps
were selected for module assembly, resulting in an improvement of the ranking for modules mounted
on local supports.

6.7 Production Yield1300

The production yield of bare modules is summarized in Table 6. Most losses were due to sensor
damage, bad bumping and front-end IC damage.

Sensor damage usually is detected by an early breakdown voltage in the sensor tiles previously
passing the sensor quality cuts. This loss rate was similar for both bump vendors and resulted in
about 3% of the modules being rejected.1305
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Indium PbSn Total
Modules Fraction Modules Fraction Modules Fraction

Assembled 1468 1157 2625
Rejected 172 11.7% 35 3.0% 207 7.9%
Accepted (total) 1296 88.3% 1122 97.0% 2418 92.1%
Accepted as delivered 1101 75.0% 1035 89.5% 2136 81.4%
Accepted after reworking 195 13.3% 87 7.5% 282 10.7%

Table 6. Bare module production yields.

Bad bump bonding and FE damage were repairable according to the reworking procedures
outlined previously. The failure rate and the possibility of reworking differed between the two
bump vendors. In the case of bump problems, the solder-bump vendor often performed internal
reworking after the in-house X-ray inspection, reprocessing the bumps. For indium bumps, there
was no possibility to reprocess the bump deposition. In thiscase, if the damage was too widespread,1310

the module was not submitted for reworking. This resulted inan overall higher failure rate for
indium bumping.

FE damage was due to silicon shards trapped between the sensor and the FE chips. During
flip-chip, the shards break the surface of the FE chips, resulting in shorts between the metal layers.
The problem was more severe for indium-bumps, given the smaller bump height. Replacement1315

of the FE chip usually resolved the problem, but manually removing the shards from the detector
surface was required in order to attain a good rework efficiency. The production yield of assembled
modules is summarized in Table 7.

Modules were also rejected due to mechanical damage observed after the assembly procedure,
either induced by handling or because of weakness in parts that passed previous quality control1320

steps.

Modules containing one or more FE which could not be operatedwere also discarded from
the production path. A loss of about 1% was due to defects in the path from the MCC to the
FE through the flex-hybrid. For In-bumped modules, the additional yield loss is due to shorts on
the FE, similar to the behavior observed on bare modules. These defects were concentrated on1325

reworked modules and modules that underwent multiple shipments. They can be assumed to be the
same defect of shards as seen on bare modules, which is not present after the initial bonding, but
is finally produced by the additional mechanical stress during module assembly. The difference in
the ranking distribution between the Indium and solder bumpmodules is mainly due to regions of
disconnected bumps, discussed in section 6.6. Overall the yield for module production exceeded1330

the target, which was initially 90%, for each step in the baremodule assembly, and subsequently
for the full module assembly and characterisation.

7. Test Beam Studies

The performance of the pixel detector modules has been measured systematically in beam tests
throughout their development. Initially, sensor properties were studied with single chip assemblies,1335
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Indium PbSn Total
Modules Fraction Modules Fraction Modules Fraction

Assembled 1190 1122 2312
Accepted 1025 86.1% 1075 95.8% 2100 90.8%

b-layer quality 281 23.6% 445 39.7% 726 31.4%
not b-layer quality 744 62.5% 630 56.1% 1374 59.4%

Not accepted 165 13.9% 47 4.2% 212 9.2%
Ranking> 1000 68 5.7% 10 0.9% 78 3.4%

at least one dead FE 71 6.0% 10 0.9% 81 3.5%
testing not completed 26 2.2% 27 2.4% 53 2.3%

Table 7. Assembled module production yields.

namely reduced size sensors, which were read out by a single front-end chip. Later, full pixel
modules were analysed in test beams. Results from test beamscan be found in [55, 61, 75–84]. In
this section we summarise beam measurements performed using the ATLAS pixel modules during
the final stages of development and qualification.

7.1 The Test Beam Setup1340

Test beam measurements were performed at the H8 beamline of the Super Proton Synchrotron
(SPS) at CERN, using a beam of 180 GeV charged pions. A beam telescope [85] was used to track
beam particles independently of the devices under test. Thetelescope consisted of four planes
of double-sided silicon strip detectors, with perpendicular strips at 50µm pitch, that provided a
reference track with an extrapolation uncertainty of about6 µm. Pixel assemblies under test were1345

placed between the second and third strip planes. Irradiated modules were inserted into a thermally
insulated box, which maintained a temperature of about -7◦C, as foreseen in ATLAS.

A trigger was provided by the coincidence of three fast scintillators. For each event, a TDC
measured the difference in time between the particle passage and the edge of a 40 MHz clock, seen
by the pixel electronics. For each trigger, data from eight consecutive cycles were read out in order1350

to study the pixel signal behaviour in a 200 ns window.
For a fraction of the data taking, a high intensity beam was provided by the CERN SPS in

order to study the efficiency of the readout architecture when the particle rate was comparable to
that expected for the b-layer at the design luminosity of theLHC, namely 1034 cm−2s−1. At the
beam center, the flux reached approximately 108 particles/cm2/s. At this particle flux, both the1355

scintillator system and the microstrip telescope were inoperable. Data were, instead, collected with
a random trigger, and particle trajectories were reconstructed using four pixel modules.

7.2 Irradiation of Tested Assemblies

A major design requirement for the pixel detector is its radiation tolerance during the lifetime of
the experiment at the LHC. Single chip assemblies and modules were systematically irradiated1360

before operation in the test beam with 24 GeV/c protons at the CERN Proton Synchrotron (PS)
proton irradiation facility. The proton fluence was 2×1015cm−2, corresponding to a 1 MeV neu-

– 52 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
4
0
8

tron equivalent fluence of 1×1015 neqcm−2and a dose of about 500 kGy. This corresponds to the
expected dose resulting from five years of LHC operation witha 1034 cm−2s−1 luminosity at the
b-layer position. Throughout the irradiation, subsequentstorage and test-beam operation, the mod-1365

ules were kept at about -70C. Unless otherwise specified, the irradiated modules were operated at
600 V in the test beam, while the unirradiated ones were operated at 150 V.

7.3 Event Reconstruction and Analysis

Tracks were reconstructed using information from the telescope microstrip detectors only (except
during the high rate tests), in order to have an unbiased extrapolation of the tracks through the1370

pixel detectors under test. Events were selected [86] with one and only one track reconstructed by
the silicon microstrip telescope. Tracks were required to extrapolate to a fiducial region inside the
pixel sensors (at least 40µm from the edges of the detector). In addition, only events with a χ2

probability of the track fit greater than 0.02 were kept. For each event selected, the intersection of
the trajectory of the beam particle with the pixel detector was calculated.1375

Neighboring pixel cell hits were clustered together. The mean cluster size ranged from 1 to
3.5 pixels for unirradiated sensors and from 1 to 2 pixels forsensors irradiated to 1. 1015 neqcm−2,
depending on the angle incidence of a track. [75] The bunch crossing identifier of the earliest pixel
hit in the cluster was assigned to the whole cluster. The cluster position was typically reconstructed
as the geometric mean position of the pixel cell centres. However, for the measurement of spatial1380

resolution, the cluster position was reconstructed with a charge interpolation algorithm.

7.4 Measurements of Detection Efficiency

The efficiency was computed by requiring a pixel cluster nearthe intersection of the trajectory of
the beam particle with the pixel detector and in the expectedbunch crossing. The width of the
window used to associate a cluster to a track was±0.2 mm along the short pixel side direction and1385

±0.4 mm along the long pixel side direction.

The efficiency was computed as a function of the timet = t0 +n×25 ns, wheret0 is the TDC
phase between the trigger and the edge of the clock operatingthe modules, andn is the bunch
crossing ID of the cluster. Efficiency curves at perpendicular beam incidence are shown in Fig. 32a
for an unirradiated module and in Fig. 32b for a module irradiated to 1015 neqcm−2.1390

At the LHC, only hits with a time stamp associated with a level1 trigger are readout, i.e.
only hits for which the leading edge rises in the 25 ns window corresponding to the clock cycle
associated with the trigger are recorded. The position of this window can be tuned by setting
the delay of the clock edge with respect to the bunch crossingtime. The timewalk, i.e. the delay
between the particle crossing and the leading edge of the signal passing the discriminator threshold,1395

results in a spread in the time when hits are generated. It is,therefore, important to find the delay
of the clock edge that maximises the number of hits collectedwithin one clock cycle. Moreover,
the performance should be stable for small variations in this delay, and a plateau in the relationship
between efficency and time delay is required.

A good detector should have a high efficiency over a large range of clock phases. For the1400

unirradiated detector of Fig. 32a, the plateau efficiency was 99.90%, and this value was maintained
for about 14 ns (plateau width). For the irradiated detectorof Fig. 32b, the efficiency decreased
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Figure 32. (Left) Detection efficiency at perpendicular beam incidence as a function of particle arrival time
for an unirradiated module and (Right) for a module irradiated to 1015 neqcm−2.

to 98.23% but was still well above the ATLAS pixel module specification (≥ 97%). The timing
characteristics were affected by irradiation, resulting in slower rising and falling edges, leading to
a narrower efficiency plateau. However, the rise time was only slightly degraded by irradiation and1405

a large plateau was still obtained, with a width of about 9 ns.

A summary of measurements performed on several pixel production modules is given in Ta-
ble 8, for data collected at normal incidence. The detectionefficiency was 99.9% for an unirradi-
ated module, while for the irradiated modules it varied froma minimum of 96.4% to a maximum
of 98.4%, with an average and r.m.s of 97.8% and 0.7%, respectively. All irradiated modules1410

had similar timing constants. The width of the efficiency plateau for the irradiated detectors was
(9.7±1.1) ns. No statistically significant difference was observed between the two sensor produc-
ers or the two bump-bonding techniques.

For each module, the efficiency losses were reported separately when due to missing hits
(0-hits) or due to timing losses (i.e. out-of-time hits, primarily recorded in subsequent bunch cross-1415

ings). Two thirds of the efficiency losses, (1.5±0.4)%, were typically in the 0-hits class and the
remaining (0.7±0.3)% fell into the timing loss class. Missing hits were caused by various effects:
pixels not giving a signal (due to detached bumps), noisy pixels masked at the readout (see below)
and pixels collecting a signal lower than the threshold. This last cause of efficiency loss as well as
timing losses in irradiated detectors were related to regions of poor charge collection located near1420

the bias grid described in section 5 [55].

7.4.1 Noise

Noisy pixels, identified prior to the test beam, were masked in the front-end chip configuration file.
This procedure introduced an inefficiency which contributed to the 0-hit class. In addition, a few
noisy pixel cells were also detected and masked during the offline reconstruction [79, 83], as now1425
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module 510332 510337 510689 510704 510823 510852 510910 510929
irradiated YES YES YES YES YES YES YES NO
sensor producer ON CIS ON CIS CIS CIS CIS CIS
bonding Indium Indium Indium Indium PbSn PbSn Indium Indium
efficiency [%] 97.7 98.4 96.4 98.2 98.4 98.0 97.4 99.9
0 hits [%] 1.4 1.1 2.3 1.3 1.2 1.4 1.6 0.0
late hits [%] 0.9 0.5 1.3 0.5 0.4 0.6 1.0 0.1
plateau [ns] 8.6 9.2 8.5 9.3 10.2 11.4 10.8 13.9
masked [%] 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.0

Table 8. Summary of the pixel efficiency measurements performed at normal incidence with the standard
bias voltage (150 V for modules without irradiation and 600 Vfor the irradiated modules). The first row
provides the module identifier, the second indicates whether it was irradiated before operation at the test
beam, the third presents the producer of the sensor, and the fourth indicates the bump-bonding technique.
Subsequent rows report the detection efficiency, the fraction of losses due to undetected particles (0 hits),
the time-walk losses (late hits), the width of the efficiencyplateau and the fraction of pixels that were found
to be noisy in the offline analysis and hence excluded from theefficiency analysis.

described. In any given run the level-1 timestamp of pixel hits, correlated with a trigger, had a well
defined valuel0. In order to search for noisy pixel cells, hits with a level-1which occurred either
beforel0 or far after the most probable valuel0 (l < l0−1 or l > l0 + 3) were selected. If a pixel
cell contributed four or more times to these events and for a fraction larger than 10−5 of the total
number of events, then it was flagged as noisy and masked.1430

The track extrapolation was required to be at least 50µm away from the pixel cells masked
during the offline reconstruction. Thus, the pixel cells masked by the offline reconstruction did
not contribute to the inefficiency. The number of noisy cellswas, however, very small. Using the
procedure described above, only two noisy pixels (out of 47232 i.e. 4× 10−5) were found in the
unirradiated module. For all but one of the irradiated modules, the number of noisy, masked, pixel1435

cells ranged from 0 (for three modules) to 32. One exceptionally noisy module (510704) had 129
noisy pixels, still only a fraction, 0.3% of the total numberof pixels.

7.4.2 Timing Studies

In ATLAS the clock phase can be adjusted for each individual pixel detector module, but it is the
same for all the pixels within a module. Hence, in order to achieve a good efficiency, it is important1440

that the timing differences (i.e. the spread of thet0 values in the efficiency curve) between different
pixels of a module is smaller than the width of the efficiency plateau. The timing differences
between different types of pixels (ganged, long and standard) and between the 16 front-end chips
of a module were found to be smaller than 2 ns (see Table 9). Since this difference is smaller than
the width of the efficiency plateau, it should have a negligible effect on the module efficiency at the1445

LHC.

7.4.3 Detection Efficiency and Bias Voltage

The in-time efficiency for an irradiated module is reported in Fig. 33a as a function of the operating
bias voltage. For low values of bias voltage, the collected charge is small, since the detector is not
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pixel type ε [%] t0 [ns] plateau [ns]

standard 98.0 11.7 11.7
long 99.1 12.4 10.8
ganged 97.7 13.7 11.3

Table 9. Detection efficiency and timing parameters measured for different types of pixels (standard, long
and ganged, see section 5 for their description) for a moduleirradiated to 1015 1 MeV neqcm−2.

fully depleted. Hence the maximum efficiency is reduced. Theeffect of time-walk is also evident:1450

when the collected charge is smaller, the hits are detected later and the efficiency curve moves to
the right. The lower amount of collected charge affects the timing characteristics of the module.
As the detector bias voltage decreases, less charge is collected. As a result, the module shows
slower rising and falling edges and the efficiency plateau becomes narrower. Fig. 33b presents the
peak efficiency as a function of the bias voltage for two modules irradiated to 1015 neqcm−2. Full1455

efficiency is reached at 500 V, when the detector is fully depleted.
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Figure 33. (a) Detection efficiency as a function of time in ATLAS pixel modules irradiated to
1015 neqcm−2, for different values of the operating bias voltage. (b) Maximum detection efficiency as a
function of operating bias voltage in ATLAS pixel modules irradiated to 1015 neqcm−2.

7.4.4 Detection Efficiency and Incidence Angle.

In ATLAS, tracks will not generally be incident perpendicular to a pixel module plane. Conse-
quentially, the influence of incidence angle on module performance needs to be evaluated. When
particles traverse the detector at an angle, the charge released in the sensor is spread over a larger1460

area and is usually divided among more than one pixel cell. This creates two competing effects for
the detection efficiency. Because of charge sharing, each individual pixel has a lower signal. This
increases the hit losses due to the time-walk. On the other hand, the probability to lose the cluster
is reduced, since both hits need to be lost. As discussed above, at normal incidence most of the hit
losses occur when the particle transverse the detector in a spatially limited region of the pixel cell.1465

This region is located close to the edge between two pixel cell, where the bias grid is located. Here,
charge sharing occurs also at normal incidence because of diffusion, and the charge collection ef-
ficiency is low. When the particle incidence angle is in the range of 10◦, the charge released in the
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sensor is spread over a length much larger than the region with poor charge collection, so that the
overall charge collection efficiency is higher.1470

Table 10 presents the detection efficiencies for particles at 0◦ and 10◦ for both irradiated and
unirradiated modules. The results indicate that the spreadof charge over a larger region actually
dominates so that the efficiency is larger when the detectorsare tilted. The results reported in this
paper, which are mostly obtained with measurements at normal incidence, are thus conservative.

module 510852 510910 510929

normal incidence 98.0% 97.4% 99.9%
10◦ 98.4% 98.5% >99.93%

Table 10. Detection efficiency measured for the unirradiated module 510929 and the irradiated modules
510852 and 510910, at two values of incidence angles.

7.4.5 Efficiency in a High Intensity Beam1475

Beam tests of production modules were performed with a high intensity pion beam at various beam
intensities, up to the value foreseen for the innermost pixel layer at the design LHC luminosity of
1034 cm−2s−1, in order to test the readout system in the presence of high occupancy conditions. At
each intensity, data were taken with different configurations of the front-end chip. There are several
mechanisms which can induce hit losses, depending on the rate of particles crossing the detector:1480

• If additional charge is deposited while the discriminator is above threshold, it is added to the
initial one and the second hit is lost;

• After the discriminator goes below threshold, the pixel cell is unable to accept new hits until
the sparse scan logic has transferred the hit data to the end of column memory buffers;

• Finally, if all the memory buffers are occupied when the hit is transferred, it is lost due to1485

lack of memory space

The first effect depends on the local occupancy of the pixel cell, i.e. the probability to get a hit
in a bunch crossing, and on the average Time-over-Thresholdresponse for a charged particle.

The other effects are sensitive to the hit rate per column pair, since all pixel cells in a column
pair share the same sparse scan logic and memory buffer. Therefore, results are quoted as a func-1490

tion of the occupancy per column pair (cp) per bunch crossing(BC). The expected occupancy11

for the innermost layer at the LHC at 1034cm−2s−1 is 0.17 hits/cp/BC, which is approximately
equivalent to 108 hits/cm2/s, with an average multiplicity of 1.5 hits per track. At thetest beam, the
pixel detection efficiency was studied for the entire range of occupancies expected at the LHC and
beyond.1495

A summary of efficiency measurements are reported in Table 11with an indication of the
maximal occupancy per column pair. With the standard front-end electronics settings, the detector

11These figures can be obtained by rescaling the results documented in Ref. [3] and taking into account the increase
of the pixel long pitch from 300µm to 400µm. These results have been confirmed by simulation studies done with the
updated layout.
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efficiency of irradiated detectors remains unchanged and close to 98% up to an occupancy of 0.24
hits per clock cycle per column pair. This value exceeds by about 40% the maximum occupancy
foreseen.1500

At larger occupancies, a small inefficiency arises from saturation of the end-of-column buffers
of the front-end electronics chip. This saturation is properly flagged by the FE Buffer Overflow
flags. Removing the events with the error flag restores the hitefficiency to its value at a lower
intensity. The maximum value of column pair occupancy reached at the test beam was 0.27 hits per
clock cycle for irradiated modules, and 0.30 hits per clock cycle for the module without irradiation.1505

The corresponding efficiencies were about 96% for irradiated modules and 89.8% for the modules
that were not irradiated.

Non-standard settings of the front-end electronics were also studied. When the latency is
increased from 130 to 250 clock cycles, the intensity at which hit losses are observed is reduced by
the same factor. The reduction of the frequency of the columnpair readout clock from 40 MHz to1510

20 MHz results in a sharp efficiency loss when the occupancy exceeds 0.14 hits per clock cycle per
column pair, because some pixel hits are not transferred to the end-of-column buffers within the
latency of 130 clock cycles. With the usual 40 MHz operation,hit losses due to this mechanism
are not expected unless the occupancy is larger than twice this value (0.28 hits per clock cycle per
column pair). The efficiency also decreases when the amplifier feedback current is changed, so1515

that the peak of the ToT distribution increases. The effect is due to the passage of a second particle
through a pixel cell before the signal produced by the first event has fallen below the discriminator
threshold. The efficiency loss is compatible with expectations, and it is very small. For an average
ToT of 15 clock cycles and the nominal b-layer occupancy, theefficiency loss due to this effect is
0.75%. Buffer occupancy can also be increased by activatingthe double-writing of hits below a1520

certain ToT threshold (see section 4.2.2).
The test beam results demonstrate that at the hit rates expected for the b-layer at the LHC

design luminosity, the pixel detector modules have an efficiency larger than 98%. However, it
should be noted that while the testbeam did simulate the highrate of hits in the modules, it did not
simulate the high Level-1 rate and high data transmission rate that would be expected at the LHC,1525

so the test only represents a partial simulation of operation at the highest luminosities. The effect
of possible inefficiencies due to untested parts of the data acquisition chain will, however, appear
as a reduction in the global DAQ live-time and not as a specificreduction of the pixel detector
efficiency.

The b-layer hit detection efficiency may also be reduced by a few percent if the occupancy1530

significantly exceeds the nominal value. This may occur for several reasons, such as track loopers
at low momenta, app cross section at the LHC larger than the current estimate, ora machine
luminosity exceeding the design value. Very large values ofoccupancy will also be reached during
the heavy ion runs.

7.5 Spatial Resolution1535

We describe here measurements of the spatial resolution using pixel modules equipped with the
final production sensors and the final or nearly final readout electronics (the FE-I family of read-
out chips - see section 4). Measurements done with older prototypes have been published else-
where [75–78].
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Occupancy ε ε ε Occupancy ε ToT lat. read. hit
irradiated 510689 510852 510910 not irr. 510929 dupl.

[hits/cp/BC] [hits/cp/BC] [BC] [BC] [MHz]

0.030-0.043 0.981 0.984 0.986 0.040 0.988 15 130 40 NO
0.069-0.084 0.981 0.984 0.985 0.082 0.986 15 130 40 NO
0.100-0.124 0.980 0.982 0.983 0.124 0.983 15 130 40 YES
0.199-0.202 0.978 0.982 0.985 0.239 0.984 15 130 40 NO
0.269-0.282 0.964 0.967 0.944 0.306 0.898 15 130 40 YES

Table 11. Measurements of detection efficiency performed with a high intensity beam. The first column
reports the average occupancy of the irradiated modules forthe column pair where the beam was most
intense. The range corresponds to different positions of each module relative to the beam, and the occupancy
varies slightly from module-to-module. The second to the fourth columns report the measured detection
efficiency of the three modules irradiated to 1015 neqcm−2. The fifth and the sixth column show, respectively,
the occupancy and the efficiency of the unirradiated module.The last columns give the front-end electronics
settings, in the following order: the ToT peak tuning value and the latency, the column readout frequency,
and whether hit duplication was on.

Spatial resolution is mainly determined by the pixel cell size, the choice between analog or dig-1540

ital readout and the degree of charge sharing between adjacent pixels. Charge sharing is affected by
intrinsic sensor properties (e.g. inter-pixel capacitance and pixel capacitance to the backplane), op-
erational parameters (such as the reverse bias operating voltage and radiation damage, etc.) and by
parameters related to electronic readout (threshold, crosstalk, charge resolution, etc.). A substantial
role is also played by the incident particle track angle and by the~E×~B effect.1545

If there is no charge sharing, all of the charge carriers locally generated around the incident
particle trajectory are collected on a single pixel (singlehit clusters) and the spatial resolution is
related toσ = L/

√
12, whereL is the pixel pitch. If the liberated charge is collected on neigh-

bouring pixels (two or more pixel clusters), charge interpolation becomes possible, which provides
for improved resolution. The charge sharing between adjacent pixels was studied using tracks at1550

normal incidence. The width of the charge sharing region ranged between approximately± 3 and
± 7 µm depending on the threshold, depletion depth and bias voltage (which influences diffusion).

When a particle is incident upon the charge sharing region, it may generate two-pixel-clusters.
This depends on sensor charge collection efficiency and the electronics threshold. Two different
algorithms were used to reconstruct the spatial position oftwo-pixel-clusters. Adigital algorithm,
which uses the center position between the two pixels, and ananalogalgorithm that corrects the
binary position just described using an interpolation of the charge collected by the two pixels. Since
it was observed that the ratio of the charge collected on the right-hand side pixel (Qr ) over the total
charge collected by the two pixelsη = Qr/(Ql + Qr) (whereQr andQl are the charges collected
by the right-hand side and left-hand side pixels in the cluster, respectively) had a dependence on
the position of the passing particle, the following interpolation was adopted [87]:

xan= xdig+
∆
N0

∫ η

0

dN
dη

dη (7.1)

wherexan andxdig are the spatial positions reconstructed by the analog and digital algorithms,
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respectively. This formula assumes thatN0 particles are spread uniformly over an interval∆ that is
the width of the region within which charge sharing occurs.1555

An equivalent procedure was adopted for multi-pixel clusters. These occur when particles
traverse the pixel sensor at an angle. For inclined particles, the charge is collected over a region
approximately given by D×tg(α), where D is the sensor depletion depth, andα is the angle be-
tween the particle trajectory and the normal to the sensor surface. Charged particles with large
incident angles produce signals on many pixels and the average charge per pixel decreases, despite1560

the longer trajectory in the silicon. Since only the signal amplitudes on the edge pixels in the clus-
ters carry information on the position of the passing particle, the digital and the analog algorithms
described above were used to reconstruct the coordinate, but only taking into account the first and
the last pixel in the clusters [76]. Referring to (7.1),∆ depends on the angle, cluster multiplicity
and sensor design and is extracted from a fit to data for each configuration.1565

As the track length in a pixel is geometrically limited byp/sinα (p being the pixel size),
charges on a pixel exceedingQcut = λ p/sinα (whereλ is the mean number of electrons gen-
erated per unit path length) are due to energy loss fluctuations andδ electrons. The impact of
these fluctuations on resolution was reduced by setting pulse heights exceedingQcut to Qcut, when
computingη .1570

In what follows, x describes the short (50µm) and y the long (400µm) pitch dimension of
the pixel assembly.

7.5.1 Determination of the Telescope Extrapolation Uncertainty

The pixel spatial resolution was determined by computing the residuals between the coordinate
measured by the pixel detector and that predicted by the silicon microstrip telescope. The extrap-1575

olation uncertainty depends on many parameters, e.g. the position of the microstrip planes and of
the pixel detector under study, the microstrips intrinsic resolution, the amount of material along the
beam path, etc. The telescope resolution was improved by applying a tight selection on the track
reconstructionχ2 probability.

The resolution of the telescope can be evaluated using the residuals for both single pixel and1580

double pixel clusters at normal incidence. An example of these distribution is shown in Fig. 34.
Single pixel clusters occur when incident particles cross the pixel central region of width L=p-
2*∆. The distribution of these residuals can be parametrised asa uniform distribution of width L,
convoluted with a Gaussian distribution that takes into account the resolution of the silicon strip
telescope, threshold effects andδ -rays [84]. An alternative method to estimate telescope resolution1585

is a Gaussian fit to the two-pixel cluster analog residuals whose width is expected to be dominated
by the telescope uncertainty.

The two methods give values in statistical agreement for thetelescope resolution. At 0◦, the
telescope resolution values between 3 and 6µm were measured, depending on the different amount
of material along the beam line. At higher angles, slightly worse values were measured, due to the1590

projection on the pixel detector plane (which yields a telescope resolution proportional to 1/cosα)
and the presence of more material along the beam when the detectors are tilted.

The quoted values are the standard deviations obtained by fitting the residual distributions
with a Gaussian function. These are less sensitive to statistical fluctuations than the rms and give
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a reasonably good description of the width of the distributions even when the distributions are not1595

Gaussian. This occurs at angles where a limited charge sharing is present.
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Figure 34. Left: residuals between the position measured by an unirradiated pixel detector (LBL22) using
the digital algorithm and by the telescope extrapolation, for two different angles of incidence of the beam
(0◦ upper plots, 10◦ lower plots). Different shadings indicate different sizesof the pixel clusters. Right:
residuals between the position measured by the pixel detector using the analog algorithm and by the telescope
extrapolation. After subtraction of the telescope extrapolation uncertainty, the r.m.s. are 12.2 and 12.1µm
at 0◦ for digital and analog algorithms, respectively, and 10.1 and 7.2µm at 10◦.

7.5.2 x-Spatial Resolution at Normal Incidence

At normal incidence, mainly single-pixel and double-pixel-clusters occur. The resolution is de-
termined by their relative abundance and is dominated by thesingle-hit cluster resolution. The
combined distribution of single- and double-pixel clusters for the FE-I2 module shown in Fig. 34,1600

upper plots, has a standard deviation of 12.2µm.
The relative weights of single-pixel and double-pixel-clusters are listed in Table 12, where the

results for eight FE-I modules are presented. The difference between analog and digital resolutions
or between unirradiated and irradiated modules is not large. Note that the latter were still fully
depleted at the operating bias voltage of 600 V (see section 7.6).1605

7.5.3 x-Spatial Resolution as a Function of the Angle of Incidence

The dependence of the spatial resolution on the angle (α) of the incident particle with respect to
the normal to the sensor surface was studied. The standard deviations of the all-cluster residual
distributions are shown in Fig. 35. The data were not corrected for the silicon microstrip telescope
extrapolation uncertainty.1610
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Module Irradiated 1 hits [%] 2 hits [%] Digital resolution [µm] Analog resolution [µm]
GE04 NO 76.3 22.2 11.8 11.7
LBL20 NO 77.0 21.5 11.6 11.4
LBL22 NO 77.0 21.1 12.2 12.1
IZMc YES 70.1 28.8 10.6 10.3
AMS310b YES 67.8 30.9 10.0 9.6
510929 NO 78.6 19.9 10.7 10.6
510910 YES 76.7 19.2 11.1 10.9
510689 YES 82.5 14.4 11.8 11.7

Table 12. Measurements of spatial resolution performed at normal incidence. The fraction of single- and
double-pixel clusters is also reported. Telescope extrapolation has been subtracted.
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Figure 35. Measured digital (left) and analog (right) resolution as a function of the angle (in degrees) of in-
cidence of the beam, without subtraction of the telescope extrapolation uncertainty. The charge interpolation
used by the analog algorithm allows one to obtain a dramatic improvement in the spatial resolution, except
for small incidence angles, when the single-pixel clustersare dominant.

As the tilt angle is increased, the fraction of double-pixelclusters increases, their residual
distribution gets wider and the single-pixel cluster distribution narrower. This is a consequence of
single-pixel clusters occurring in a more restricted region.

The best digital resolution is obtained when the two distributions are equally populated. For
any given angle, about 98 % of clusters are formed from only two multiplicities (1 and 2, 2 and 31615

and so on, depending on the angle). When they are equally populated the digital resolution is of
the order ofp/2/

√
12= 25 µm/

√
12. When the angle is such that nearly all of the events belong

to one multiplicity only, the digital resolution is of the order of p/
√

12= 50µm/
√

12. The digital
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resolution as a function of angle (Fig. 35a) oscillates between these two extreme values.12

The spatial resolution obtained with the analog algorithm (Fig. 35b and Fig. 34, lower right)1620

is always better than the corresponding digital resolutiononce the incidence angles become larger
than 0◦. The charge interpolation used by the analog algorithm allows one to obtain a dramatic
improvement in the spatial resolution for clusters with twoor more pixels. The best resolution
occurs when the proportion of single-pixel clusters becomes negligible. This occurred between
10◦ and 15◦. The best resolution for the unirradiated devices was 6.6 µm before correcting for1625

the telescope resolution. The best resolution for a device irradiated to 1015 neqcm−2 was 9.1 µm
before correcting for the telescope resolution. The spatial resolution is not significantly degraded
post-irradiation, showing that no inhomogenities are introduced in the sensor after irradiation. The
differences in spatial resolution before and after irradiation are completely explained by a reduced
charge collection efficiency. As the angle of incidence increases further, the charge collected by1630

every pixel is reduced and energy loss fluctuations introduce inefficiencies in the first and last pixel
in the cluster, thus degrading the resolution.

7.5.4 Lorentz Angle

In the presence of an electric field and a magnetic field, the charge carriers liberated by a passing
particle within silicon drift along a direction at an angleΘL (Lorentz angle) with respect to the1635

electric field direction, due to the~E×~B effect. This will happen in the barrel of the pixel detector,
where the electric and magnetic field are at right angles (butnot in the disks where they are parallel).

The Lorentz effect produces a systematic shift between the position of the signal induced
on the electrodes and the position of the track. While this shift is in principle absorbed by the
alignment correction, the knowledge of the Lorentz angle will help for the understanding of the1640

alignment corrections and their time dependence. In addition, the Lorentz effect is expected to
change the angular dependence of the spatial resolution. The Lorentz angle was measured using
test beam data and a detailed report of these measurements ispublished elsewhere [75]. A short
summary is given here.

The Lorentz angle for irradiated and unirradiated sensors was determined by measuring the1645

minimum of the mean cluster size plotted as a function of the angle of the incident beam parti-
cles. The minimum occurs for an incident angle equal to the Lorentz angle. The results of the
measurements are reported in Table 13. The measured values are compared to the predictions of a
model [75, 78] which computes the Lorentz angle as a functionof the magnetic field and mobility
inside the sensor, the latter depending on the temperature and the electric field. A good agreement1650

is found. Irradiated sensors have a lower Lorentz angle because a larger bias voltage is applied on
a smaller depletion depth. A discussion of the Lorentz anglevalues expected for the pixel detector
during operation in ATLAS can be found in [88].

The effect of the Lorentz force on the spatial resolution is expected to be a shift of the angular
dependence of the resolution on the incidence angle by an amount equal to the Lorentz angle. This1655

has been verified with the test beam data, namely the spatial resolution as a function of incidence
angle in the presence of a magnetic field was indeed similar tothat obtained without the magnetic
field, once the angular shift was taken into account [75,78].

12The silicon microstrip telescope extrapolation uncertainty was not subtracted.
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Fluence [neqcm−2] Bias voltage [V] T [K] Magn. field [T] ΘL (meas.) [◦] ΘL (th.) [◦]

0 150 300 1.48±0.02 9.0±0.4±0.5 9.3±0.4
0.5×1015 150 264 0.95±0.05 5.9±1.0±0.3 3.7±0.5
0.5×1015 600 264 0.95±0.05 2.6±0.2±0.3 2.7±0.2
1015 600 264 1.01±0.05 3.1±0.4±0.6 2.1±0.2
1015 600 264 0.74±0.05 2.7±0.4±0.4 1.8±0.2

Table 13. Lorentz angle measurement results.

7.6 Depletion Depth of Irradiated Sensors

The depletion depth of irradiated sensors is an important parameter, since its value affects the1660

detector’s performance. It has therefore been studied in detail. The measurement of the depletion
depth was performed according to the technique described in[75–77]. Data were taken exposing
the pixel assemblies to the beam at an angle of 30◦ w.r.t. the normal to the pixel plane, and then the
average depth of charge deposition under each pixel was computed and histogrammed. The depth
of charge collection region was extracted from the upper edge of this distribution. In Figure 36 the1665

depletion depth measurements of the irradiated assembliesare shown as a function of the applied
bias voltage and for three different annealing protocols.13 In agreement with expectations made
using the radiation damage parameters of the ROSE Collaboration [50], at 600 V, 250µm thick,
diffused-oxygenated-float-zone (DOFZ) silicon detectorsare almost fully depleted after the full
LHC dose from 10 years of operation and independently of their annealing history.1670

7.7 Charge Collection in Irradiated Sensors

Charge collection of irradiated sensors is an important characteristic, since its value affects detector
performance, both in terms of efficiency and spatial resolution. In Figure 37, the average charge
of pixel clusters with a normal incidence beam is shown as a function of operating voltage for
irradiated assemblies. The maximal efficiency for the charge collection is reached at about 4001675

V for the detector annealed at the minimum value of depletionvoltage Vf d (expected Vf d = 350
V), and its charge collection efficiency does not increase atlarger operating voltages, i.e. at larger
electric fields. This is related to the choice of the n-side readout. Since the pixel width is much
smaller than the substrate thickness, most of the signal is induced by charges moving near the n-
side [89], where the electric field has a maximum and the driftvelocity is already saturated (i.e.1680

independent on the electric field) at 400 V. For the detectorsannealed at the end of lifetime at LHC,
the plateau in charge collection is reached at 600 V (i.e. at their Vf d). One can notice that at the
foreseen operating voltage of 600 V, the charge collected bythe detectors will be well above the
threshold of FE electronics. One should note the different asymptotic values of charge collection
efficiency for the two annealing protocols: at 600 V or higheroperating voltage, where irradiated1685

sensors were completely depleted, the average Charge Collection Efficiency was (87±14) % (w.r.t.

13The three annealing scenarios considered in the measurement and reported in the figure are: no significant annealing;
the annealing which results in the minimum value of depletion voltage for a given thickness (at the end of the so called
beneficial annealing); 25h of annealing at 60◦C, roughly corresponding to the total annealing foreseen forthe pixel
detector sensors during their operating lifetime at the LHC.
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Figure 36. Measured depletion depth as a function of operating voltagefor DOFZ silicon pixel detectors
after irradiation of 1× 1015 neqcm−2. The applied annealing protocol is indicated, as well as thesensor
manufacturer (CiS and ON) and bump bonding (AMS and IZM) producers. At a bias voltage of 600 V or
larger, the sensors are almost completely depleted.
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Figure 37. Average collected charge as a function of operating voltagefor DOFZ silicon pixel detectors
after irradiation of 1× 1015 neqcm−2. The four end-of-lifetime values shown at 600 V correspond to four
different modules.

the one of unirradiated sensors operating at 150 V) for sensors annealed for 25h at 60◦ (end of
lifetime at LHC), and (72± 14) % for the sensor annealed to minimumVf d. The errors come
from the uncertainty in the charge-ToT calibration. Since detectors were completely depleted as
discussed above (see depletion depth measurements), this inefficiency is completely due to charge1690

trapping.
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7.8 Charge Trapping in Irradiated Sensors

Data taken at an angle of 30◦ between the track and the normal to the sensor surface were also used
to measure charge trapping with a new method described in [58,80]. Because of electron trapping,
the deeper the track subtended by a pixel, the lower charge itcollects. Hole trapping produces a1695

much smaller and opposite effect14. In Fig. 38, the charge collected by a pixel is reported as a
function of the average track segment depth for an unirradiated and two irradiated detectors. In
the unirradiated detector the collected charge is constantas long as the track segment subtended
by the pixel is entirely within the sensor. In the two irradiated detectors, charge trapping results
in a decrease of charge collection efficiency with depth. This effect is more severe in the detector1700

annealed to the minimum inVf d than in the four detectors annealed to the end-of-lifetime scenario.
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Figure 38. Pixel charge as a function of track depth for three fully depleted DOFZ silicon pixel detec-
tors: one unirradiated operated at 150 V and two irradiated at 1×1015 neqcm−2with two different thermal
annealing levels and operated at 700 V.

In order to be independent of the charge scale uncertainty, the charge collection profiles were
normalized and only the shape of the distribution was used toinvestigate trapping effects. In order
to extract the charge carrier lifetimes, these experimental charge collection profiles were compared
to the output of a numerical simulation [89], where the interactions of charged particles with sil-1705

icon were simulated using the Geant4 package [90]. The driftof holes and electrons in silicon
was described in detail, taking into account diffusion and trapping, and using parametrisations of
data for the charge drift properties [91]. The signal on the pixels was computed using the Ramo
theorem [92], and taking into account the electronics threshold, noise, and cross-talk.

14Since the pixel pitch is much smaller than the sensor thickness, most of the signal induced on a single pixel is due
to charges moving close to the implant. As a consequence, thetrapping of an electron anywhere in the bulk of the sensor
results in nearly a total loss of the signal induced on the corresponding pixel cell. The trapping of a hole, however, causes
a significant reduction of the signal only if it occurs in a small region near the pixel implant. This is more unlikely and
only affects the signal for low track depths.
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Sensor annealing τ (ns) β (10−16cm2ns−1)
A 25h at 60◦C 5.5±0.7±0.8 1.7±0.4
B 25h at 60◦C 3.4±0.4±0.3 2.7±0.4
I 25h at 60◦C 4.1±0.5±0.3 2.2±0.3
T3 25h at 60◦C 4.8±0.6±1.4 1.9±0.6
average 25h at 60◦C 4.1±0.3±0.6 2.2±0.4
T2 minimumVf d 2.3±0.2±0.8 4.0±1.4

Table 14.Measured values of charge trapping lifetime and radiation damage parameterβ for five irradiated
detectors at 700 V bias voltage, assuming equal lifetime forelectrons and holes.

The resulting values for the charge trapping lifetimes and the radiation-damage parameter1710

β = 1/τΦ are reported in Table 14, assuming the same lifetime for holes and electrons. There is
some evidence [93] that the hole lifetime is smaller. Assuming thatτe = 2∗ τh, the best fit values
of the electron lifetime decrease by about 12 %. The measurements were performed at 700 V bias
voltage in order to be well above Vf d. The second systematic uncertainty on trapping lifetimes is
associated with the approximation of a constant electric field inside the sensor that is correlated for1715

different sensors. While it is difficult to precisely evaluate this correlation, there is some evidence
of a dependence of the trapping probability on annealing: trapping appears to be less severe after
25 hours of annealing at 60◦C than for sensors annealed to the minimum ofVf d, after beneficial
annealing only. This result is consistent with the changes in trapping times of electrons and holes
derived with other methods [59, 93, 94]. The ATLAS pixel sensor read-out is dominated by the1720

electron signal and it is expected that the trapping times ofelectrons increase for annealing beyond
the minimum ofVf d.

7.9 Combined Test Beam

A dedicated effort to understand the combined performance of a complete slice of the ATLAS
detector, from the pixel detectors to the outermost stations of the muon chambers, took place in1725

2004 with the large-scale combined test beam exercise [95].The setup included six pixel modules,
placed inside a 1.4 T magnetic field. The setup integrated thehardware and software to approximate
as closely as possible what will exist in the full ATLAS detector. The combined test beam ran in
2004 and provided an opportunity to test the software and to study the tracking performance using
real data.1730

The pixel detector performed well in the combined test beam,producing good quality data.
Using ATLAS offline software, tracks were successfully reconstructed. Residuals obtained after
alignment showed agreement with simulation. The impact parameter andz0 resolutions were com-
parable with what is projected for the ATLAS experiment.

The use of standard ATLAS components in the software chain was successful and the com-1735

bined test beam was a valuable development test bed for the online and offline software. This effort
has led to first sets of calibration and alignment procedures, essential to the initial understanding of
the detector performance and to the extraction of the first physics results.
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8. System Test and Cosmic Rays Operation

A system test with one endcap (three disks) of the pixel detector has been performed as a realistic1740

test of the detector operation. To achieve this goal, a setupconsisting of the endcap and about 10%
of the detector services has been installed in the CERN SR1 facility. Production and pre-production
parts were used to establish the realism of the test.

The system test program included the commissioning of the setup and the detector readout,
measurements of the analogue performance of the detector modules and data taking with cosmic1745

rays. The following sections give a brief overview of the system test [96].

8.1 Setup

One endcap of the pixel detector was operated in the system test setup. The endcap was connected
to a prototype service quarter panel, as shown in the photograph in Fig. 39a, and cooled with
evaporative C3F8, also to be used for final operations. All services connectedto the endcap were1750

made from production or pre-production parts in order to create a realistic model of the final setup
inside ATLAS.

The endcap was oriented vertically for data taking with cosmic rays. Several scintillators were
used to generate the trigger. The scintillator arrangement, which is shown in Fig. 39b, was designed
to maximise the number of tracks passing through the three disks of the endcap and at same time1755

allow for inclined tracks.

(a) (b)

Figure 39. (a) Photograph of the endcap in the system test, connected tothe prototype service quarter panel,
and (b) schematic drawing of the scintillator setup for the cosmics trigger.

8.2 Commissioning of the Setup

8.2.1 Service Tests

As a first step in the commissioning of the setup, a complete test of the electrical services was
performed. This was done using a dedicated test setup, whichwas designed to automatically test1760
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all electrical services belonging to one Patch Panel 0. Thisfirst application of the services test
procedures was essential for developing the final protocol used for services commissioning of the
detector that has been installed in ATLAS.

8.2.2 Cooling Operation

Evaporative C3F8-cooling was used for the endcap in the system test. Temperature measurements1765

at different supply voltages and module configurations wereperformed in order to simulate the
evolving power consumption expected during the detector lifetime and to assess the cooling per-
formance under these conditions. The module temperature for power off was about−24◦C and
about−17◦C for nominal (non-irradiated) power values and about−12◦C (extrapolated) for power
values after irradiation to a lifetime dose [97].1770

8.2.3 Calibration of the Optical Links

For a reliable communication between the pixel detector modules and the off-detector electronics,
several parameters of the optical links (section 4.4) have to be calibrated. The algorithms for this
tuning procedure were partially developed and refined during the system test. Whereas the setting
of the parameters for the links from the off-detector electronics to the modules is not critical, the1775

tuning of the returning-data links requires more care. The first parameter to be adjusted was the
light output power of the VCSELs on the opto-boards. This power was determined with a control
current ISet that is common for all VCSELs on an opto-board. The power can be measured by
monitoring the current in the PiN-diodes at the receiving end. The control current has to be set
such that all VCSELs on the opto-board are safely above the laser threshold.1780

For a given laser power, the threshold and the data delay at the receiving end need to be set.
The first parameter determines the discrimination between alogical 0 and a logical 1, whereas the
second determines the sampling time within the clock cycle of the 40 MHz clock. Figure 40 shows
a two-dimensional plot of the number of bit errors measured during a scan of these two parameters.
The horizontal axis corresponds to the sampling time, whilethe vertical axis corresponds to the1785

sampling threshold. A region with errors at low thresholds can be seen. This comes mainly from
bit flips from 0 to 1 due to a threshold setting near the noise floor. A region with errors at high
thresholds is apparent, which is given by bit flips from 1 to 0 due to a too high sampling threshold.
The vertical error region is caused by a sampling time which is set on the clock edge, where the
data are not stable. The operating point of the receiver has to be set in the error free region taking1790

into account that not all boundaries between error-free anderror regions are equally stable. The
noise floor and the trailing edge of the signal are more stablethan the upper signal level and the
leading edge. The most reliable operating point is not in thecentre of the error-free region, but
closer to the stable boundaries. A difficulty arises if the spread in the output power between the
different lasers of one opto-board is too large. In such a case, it can be difficult to find a value1795

for ISet such that all channels show a sufficiently large error-free region from which a stable set
of operating parameters can be chosen. In the system test it was discovered that the power spread
increases for lower opto-board temperatures. It was, therefore, decided to equip the opto-boards in
the detector with dedicated heaters to be able to regulate their temperature up to∼ 30◦C. [4]

Some of the VCSELs on the opto-boards produced very little orno optical power on all chan-1800

nels. The optical power on one channel was found to depend on the current on the other channels.
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Figure 40. Scan of the receiver parameters for the optical data link. The horizontal axis gives the sampling
phase. The vertical axis presents the sampling threshold. The colours represent the number of errors for a
given set of parameters (white corresponds to no errors in the given bit pattern).

This can be modeled with a common series resistance (CSR). The voltage drop on the CSR re-
sulted in inadequate voltage to drive the VCSELs. A procedure was formulated to estimate the
CSR and opto-boards with a high CSR were excluded from the production service quarter panels,
corresponding to about 7% of total production (see section 4.4.5).1805

8.3 Analogue Performance of the Modules

Several measurements of the analogue performance of the modules were performed during the
system test. Table 15 shows the average values of the threshold dispersion and noise for all tested
modules in the endcap. The thresholds were adjusted to 4000e−. Both threshold and noise values
are comparable to single module measurements without any notable influence coming from the1810

operation within a large scale system. The uniformity of themeasured thresholds of all modules,
which is necessary for the reliable operation of the full pixel detector, is apparent [97].

Average threshold 4002± 1.3e−

Threshold dispersion 33± 1e−

Average noise 166± 8.5e−

Table 15. Values for threshold, threshold dispersion and noise for all modules in the system test of the
endcap.
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Figure 41. Occupancy per pixel in all modules of one pixel disk before (a) and after (b) masking off hot
pixels for bunch crossings (BCID) within and outside the cosmic trigger (BCID=5).

8.4 Cosmic Ray Operation

The endcap detector was operated with an external trigger generated from a set of scintillators
arranged above and below the endcap. The rate of cosmic ray tracks crossing all three disks of the1815

endcap in the sensitive area was about 6 Hz. The detector noise was studied [98] using several runs
with different detector configurations, and it was found that the noise signal was uncorrelated with
the timing relative to the trigger. Pixel occupancy, (i.e. the fraction of pixel hits per readout event)
was used to classify “hot” pixels. Pixels with an occupancy per Bunch Crossing Identification
(BCID) of 10−5 or greater were defined as “hot” pixels. Approximately 90% ofthese “hot” pixels1820

were already identified as defective during module characterization. Their total fraction is below
0.2%. After removal of “hot” pixels, the noise occupancy drops from 10−7 to 10−10, as shown in
Fig. 41.

Data from cosmic ray operation were used to exercise the fullchain of offline reconstruction.
Digitisation parameters were taken from the characterisation tests performed during module pro-1825

duction. The simulation produced with these parameters hasbeen found to be in a good agreement
with the data, providing an important test of the ATLAS pixeldetector simulation. The tracking
studies, especially related to tracks passing through the overlap regions between adjacent modules
in the same disk, were useful for identifying problems in thedescription of the detectors geometry.

A benchmark for analogue performance is the pulse height distribution measured using the1830

Time-over-Threshold method (see section 4.2.2). Fig. 42 shows a comparison between the pulse
height distribution in cosmic ray events for single- and double-hit clusters, which are the most
relevant for LHC running. The calibration of the detector response to charge deposition, obtained
during module production and characterisation, describeswell the observed data. The characteris-
tics of pixel clustering in the data (the number of clusters on a track, the cluster size and the quality1835

of the track fit) were checked and found to agree with the MonteCarlo simulation as also shown in
Fig. 42.

The pixel hit efficiency was measured to be close to 100%. Thiswas done by checking how
often a pair of hits was found in the overlap region compared to expectations. Approximately 24%
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Figure 42. Comparison between cosmic ray data (histogram) and Monte Carlo (dashed) as measured in the
system test. The Time-over-Threshold(ToT) distribution for single-hit clusters (top left), individual hits of a
two-hit cluster (top middle) and the sum of the ToT for two-hit clusters (top right) are shown. The number
of pixel clusters (bottom left), the distribution of cluster size (bottom middle) and the fitted trackχ2 (bottom
right) are also given.
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Figure 43. Distribution of overlap residuals before and after alignment corrections. A Gaussian fit to the
residuals after correction is also shown.

of tracks passed through the overlap region, and were used toestimate the relative alignment be-1840

tween adjacent modules using residuals from overlap hits. Fig. 43 shows the resolution in the short
pixel direction before and after the alignment correction.Using the nominal geometry, an initial
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resolution of 23µm was obtained. After an alignment correction, this improves to 16µm, which
is close to the 14µm expected from the Monte Carlo simulation. The relative alignment constants
were also cross checked by comparing the data with the surveyobtained during the detector assem-1845

bly for modules with enough overlap hits (≥ 50). [4] A strong correlation between the two methods
indicates that the survey is a reasonable starting point forthe final detector alignment.

9. Conclusion

The design and fabrication of the ATLAS pixel detector electronics, sensors and modules have been
described in this paper. A brief description of the mechanics and electrical and cooling services1850

has been given, and more details on these elements of the pixel detector may be found in Ref. [4].
The performance for first operation of the pixel detector in ATLAS and with colliding beams from
the Large Hadron Collider will be described in subsequent papers.
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